Skip to main content
Log in

Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The present paper concludes our investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices (N t = 16) and we work again with physical quark masses. The new results on this broad cross-over are in complete agreement with our earlier ones. We compare our findings with the published results of the hotQCD collaboration. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. The findings of the hotQCD collaboration can be recovered by using a distorted spectrum which takes into account lattice discretization artifacts and heavier than physical quark masses. This analysis provides a simple explanation for the observed discrepancy in the transition temperatures between our and the hotQCD collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cheng et al., The transition temperature in QCD, Phys. Rev. D 74 (2006) 054507 [hep-lat/0608013] [SPIRES].

    ADS  Google Scholar 

  2. HotQCD collaboration, C.E. Detar and R. Gupta, Toward a precise determination of T c with 2 + 1 flavors of quarks, PoS(LATTICE 2007)179 [arXiv:0710.1655] [SPIRES].

  3. F. Karsch, Recent lattice results on finite temerature and density QCD, part II, PoS(LATTICE 2007)015 [arXiv:0711.0661] [SPIRES].

  4. RBC collaboration, F. Karsch, Equation of state and more from lattice regularized QCD, J. Phys. G 35 (2008) 104096 [arXiv:0804.4148] [SPIRES].

    ADS  Google Scholar 

  5. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].

    ADS  Google Scholar 

  6. M. Cheng et al., Equation of state for physical quark masses, Phys. Rev. D 81 (2010) 054504 [arXiv:0911.2215] [SPIRES].

    ADS  Google Scholar 

  7. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].

    ADS  Google Scholar 

  8. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].

    Article  ADS  Google Scholar 

  9. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].

    Article  ADS  Google Scholar 

  10. HotQCD collaboration, A. Bazavov and P. Petreczky, First results on QCD thermodynamics with HISQ action, PoS(LAT2009)163 [arXiv:0912.5421] [SPIRES].

  11. HotQCD collaboration, A. Bazavov and P. Petreczky, Deconfinement and chiral transition with the highly improved staggered quark (HISQ) action, J. Phys. Conf. Ser. 230 (2010) 012014 [arXiv:1005.1131] [SPIRES].

    Article  ADS  Google Scholar 

  12. Z. Fodor, QCD thermodynamics, PoS(LATTICE 2007)011 [arXiv:0711.0336] [SPIRES].

  13. P. Huovinen and P. Petreczky, QCD equation of state and hadron resonance gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [SPIRES].

    ADS  Google Scholar 

  14. P. Huovinen and P. Petreczky, On fluctuations of conserved charges: lattice results versus hadron resonance gas, J. Phys. Conf. Ser. 230 (2010) 012012 [arXiv:1005.0324] [SPIRES].

    Article  ADS  Google Scholar 

  15. B. Spang, Thermodynamic and transport properties of water and steam, http://www.cheresources.com/iapwsif97.shtml.

  16. S. Borsányi et al., The QCD equation of state with dynamical quarks, arXiv:1007.2580 [SPIRES].

  17. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [SPIRES].

    Article  ADS  Google Scholar 

  18. C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [SPIRES].

    ADS  Google Scholar 

  19. WHOT-QCD collaboration, S. Ejiri et al., Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with Wilson quark action, Phys. Rev. D 82 (2010) 014508 [arXiv:0909.2121] [SPIRES].

    ADS  Google Scholar 

  20. V.G. Bornyakov et al., Probing the finite temperature phase transition with N f = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [SPIRES].

    ADS  Google Scholar 

  21. K. Kanaya et al., Towards the equation of state in 2 + 1 flavor QCD with improved Wilson quarks in the fixed scale approach, arXiv:0910.5284 [SPIRES].

  22. M.F.L. Golterman, Staggered mesons, Nucl. Phys. B 273 (1986) 663 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. M.F.L. Golterman, Irreducible representations of the staggered fermion symmetry group, Nucl. Phys. B 278 (1986) 417 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Bazavov et al., Full nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [SPIRES].

    Article  ADS  Google Scholar 

  25. F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [SPIRES].

    ADS  Google Scholar 

  26. F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at non-zero baryon number density: a comparison of lattice and hadron resonance gas model calculations, Phys. Lett. B 571 (2003) 67 [hep-ph/0306208] [SPIRES].

    ADS  Google Scholar 

  27. A. Tawfik, The QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations, Phys. Rev. D 71 (2005) 054502 [hep-ph/0412336] [SPIRES].

    ADS  Google Scholar 

  28. S. Ejiri, F. Karsch and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett. B 633 (2006) 275 [hep-ph/0509051] [SPIRES].

    ADS  Google Scholar 

  29. M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [SPIRES].

    ADS  Google Scholar 

  30. J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Dashen, S.-K. Ma and H.J. Bernstein, S matrix formulation of statistical mechanics, Phys. Rev. 187 (1969) 345 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  32. R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718 [SPIRES].

    ADS  Google Scholar 

  33. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  34. J. Martin-Camalich, L.S. Geng and M.J.V. Vacas, The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory, arXiv:1003.1929 [SPIRES].

  35. P. Gerber and H. Leutwyler, Hadrons below the chiral phase transition, Nucl. Phys. B 321 (1989) 387 [SPIRES].

    Article  ADS  Google Scholar 

  36. C. Aubin et al., Light hadrons with improved staggered quarks: approaching the continuum limit, Phys. Rev. D 70 (2004) 094505 [hep-lat/0402030] [SPIRES].

    ADS  Google Scholar 

  37. C.W. Bernard et al., The QCD spectrum with three quark flavors, Phys. Rev. D 64 (2001) 054506 [hep-lat/0104002] [SPIRES].

    ADS  Google Scholar 

  38. S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Tawfik and D. Toublan, Quark antiquark condensates in the hadronic phase, Phys. Lett. B 623 (2005) 48 [hep-ph/0505152] [SPIRES].

    ADS  Google Scholar 

  40. M. Jamin, Flavour-symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation, Phys. Lett. B 538 (2002) 71 [hep-ph/0201174] [SPIRES].

    ADS  Google Scholar 

  41. C. Bernard, M. Golterman, Y. Shamir and S.R. Sharpe, ’T Hooft vertices, partial quenching and rooted staggered QCD, Phys. Rev. D 77 (2008) 114504 [arXiv:0711.0696] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Borsányi.

Additional information

ArXiv ePrint: 1005.3508

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsányi, S., Fodor, Z., Hoelbling, C. et al. Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III. J. High Energ. Phys. 2010, 73 (2010). https://doi.org/10.1007/JHEP09(2010)073

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)073

Keywords

Navigation