Skip to main content
Log in

The QCD equation of state with dynamical quarks

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The present paper concludes our investigation on the QCD equation of state with 2 + 1 staggered flavors and one-link stout improvement. We extend our previous study [JHEP 01 (2006) 089] by choosing even finer lattices. Lattices with N t =6, 8 and 10 are used, and the continuum limit is approached by checking the results at N t = 12. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. We use physical quark masses, that is, for the lightest staggered pions and kaons we fix the m π /f K and m K /f K ratios to their experimental values. The pressure, the interaction measure, the energy and entropy density and the speed of sound are presented as functions of the temperature in the range 100 ... 1000MeV. We give estimates for the pion mass dependence and for the contribution of the charm quark. We compare our data to the equation of state obtained by the “hotQCD” collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].

    Article  ADS  Google Scholar 

  2. D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/0011058] [SPIRES].

    Article  ADS  Google Scholar 

  3. D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [SPIRES].

  4. P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions, nucl-th/0305084 [SPIRES].

  5. G. Boyd et al., Thermodynamics of SU(3) Lattice Gauge Theory, Nucl. Phys. B 469 (1996) 419 [hep-lat/9602007] [SPIRES].

    Article  ADS  Google Scholar 

  6. CP -PACS collaboration, M. Okamoto et al., Equation of state for pure SU(3) gauge theory with renormalization group improved action, Phys. Rev. D 60 (1999) 094510 [hep-lat/9905005] [SPIRES].

    ADS  Google Scholar 

  7. MILC collaboration, C.W. Bernard et al., The equation of state for two flavor QCD at N(t) =6, Phys. Rev. D 55 (1997) 6861 [hep-lat/9612025] [SPIRES].

    ADS  Google Scholar 

  8. CP -PACS collaboration, A. Ali Khan et al., Equation of state in finite-temperature QCD with two flavors of improved Wilson quarks, Phys. Rev. D 64 (2001) 074510 [hep-lat/0103028] [SPIRES].

    ADS  Google Scholar 

  9. F. Karsch, E. Laermann and A. Peikert, The pressure in 2, 2+1 and 3 flavour QCD, Phys. Lett. B 478 (2000) 447 [hep-lat/0002003] [SPIRES].

    ADS  Google Scholar 

  10. K. Kanaya et al., Towards the equation of state in 2+1 flavor QCD with improved Wilson quarks in the fixed scale approach, PoS(LAT2009)190 (2009) [arXiv:0910.5284] [SPIRES].

  11. C. Bernard et al., QCD equation of state with 2+1 flavors of improved staggered quarks, Phys. Rev. D 75 (2007) 094505 [hep-lat/0611031] [SPIRES].

    ADS  Google Scholar 

  12. M. Cheng et al., The QCD Equation of State with almost Physical Quark Masses, Phys. Rev. D 77 (2008) 014511 [arXiv:0710.0354] [SPIRES].

    ADS  Google Scholar 

  13. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].

    ADS  Google Scholar 

  14. M. Cheng et al., Equation of State for physical quark masses, Phys. Rev. D 81 (2010) 054504 [arXiv:0911.2215] [SPIRES].

    ADS  Google Scholar 

  15. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The equation of state in lattice QCD: With physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [SPIRES].

    ADS  Google Scholar 

  17. RBC -Bielefeld collaboration, M. Cheng, Charm Quarks and the QCD Equation of State, PoS(LATTICE 2007)173 (2007) [arXiv:0710.4357] [SPIRES].

  18. L. Levkova, Effects of the charm quark on the QCD equation of state, PoS(LAT2009)170 (2009) [arXiv:0910.3006] [SPIRES].

  19. P. Huovinen and P. Petreczky, QCD Equation of State and Hadron Resonance Gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [SPIRES].

    ADS  Google Scholar 

  20. P. Huovinen and P. Petreczky, On Fluctuations of Conserved Charges: Lattice Results Versus Hadron Resonance Gas, J. Phys. Conf. Ser. 230 (2010) 012012 [arXiv:1005. 0324] [SPIRES].

    Article  ADS  Google Scholar 

  21. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [SPIRES].

    Article  ADS  Google Scholar 

  22. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].

    Article  ADS  Google Scholar 

  23. Hot QCD collaboration, A. Bazavov and P. Petreczky, First results on QCD thermodynamics with HISQ action, PoS(LAT2009) 163 (2009) [arXiv:0912.5421] [SPIRES].

  24. Hot QCD collaboration, A. Bazavov and P. Petreczky, Deconfinement and chiral transition with the highly improved staggered quark (HISQ) action, J. Phys. Conf. Ser. 230 (2010) 012014

    Article  Google Scholar 

  25. C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [SPIRES].

    ADS  Google Scholar 

  26. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].

    ADS  Google Scholar 

  27. S. Dürr, Theoretical issues with staggered fermion simulations, PoS(LAT2005)021 (2006) [hep-lat/0509026] [SPIRES].

  28. S. Schaefer, R. Sommer and F. Virotta, Investigating the critical slowing down of QCD simulations, PoS(LAT2009)032 (2009) [arXiv:0910.1465] [SPIRES].

  29. N. Ishizuka, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice, Nucl. Phys. B 411 (1994) 875 [SPIRES].

    Article  ADS  Google Scholar 

  30. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  31. M. Lüscher, P. Weisz and U. Wolff, A Numerical method to compute the running coupling in asymptotically free theories, Nucl. Phys. B 359 (1991) 221 [SPIRES].

    Article  ADS  Google Scholar 

  32. E. Bilgici et al., A new scheme for the running coupling constant in gauge theories using Wilson loops, Phys. Rev. D 80 (2009) 034507 [arXiv:0902.3768] [SPIRES].

    ADS  Google Scholar 

  33. APE collaboration, M. Albanese et al., Glueball Masses and String Tension in Lattice QCD, Phys. Lett. B 192 (1987) 163 [SPIRES].

    ADS  Google Scholar 

  34. S. Necco and R. Sommer, The N(f) = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [SPIRES].

    Article  ADS  Google Scholar 

  35. M. Gockeler et al., A determination of the Lambda parameter from full lattice QCD, Phys. Rev. D 73 (2006) 014513 [hep-ph/0502212] [SPIRES].

    ADS  Google Scholar 

  36. C.T.H. Davies et al., Precise Charm to Strange Mass Ratio and Light Quark Masses from Full Lattice QCD, Phys. Rev. Lett. 104 (2010) 132003 [arXiv:0910.3102] [SPIRES].

    Article  ADS  Google Scholar 

  37. J. Engels, J. Fingberg, F. Karsch, D. Miller and M. Weber, Nonperturbative thermodynamics of SU(N) gauge theories, Phys. Lett. B 252 (1990) 625 [SPIRES].

    ADS  Google Scholar 

  38. G. Endrodi, Multidimensional spline integration of scattered data, arXiv:1010.2952 [SPIRES].

  39. F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [SPIRES].

    ADS  Google Scholar 

  40. F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at non-zero baryon number density: A comparison of lattice and hadron resonance gas model calculations, Phys. Lett. B 571 (2003) 67 [hep-ph/0306208] [SPIRES].

    ADS  Google Scholar 

  41. A. Tawfik, The QCD phase diagram: A comparison of lattice and hadron resonance gas model calculations, Phys. Rev. D 71 (2005) 054502 [hep-ph/0412336] [SPIRES].

    ADS  Google Scholar 

  42. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Dashen, S.-K. Ma and H.J. Bernstein, S Matrix formulation of statistical mechanics, Phys. Rev. 187 (1969) 345 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  44. R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718 [SPIRES].

    ADS  Google Scholar 

  45. J. Noronha-Hostler, C. Greiner and I.A. Shovkovy, Fast Equilibration of Hadrons in an Expanding Fireball, Phys. Rev. Lett. 100 (2008) 252301 [arXiv:0711.0930] [SPIRES].

    Article  ADS  Google Scholar 

  46. J. Noronha-Hostler, M. Beitel, C. Greiner and I. Shovkovy, Dynamics of Chemical Equilibrium of Hadronic Matter Close to T c , Phys. Rev. C 81 (2010) 054909 [arXiv:0909.2908] [SPIRES].

    ADS  Google Scholar 

  47. A. Majumder and B. Müller, Hadron Mass Spectrum from Lattice QCD, arXiv:1008.1747 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán K. Szabó.

Additional information

ArXiv ePrint:1007.2580

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsányi, S., Endrődi, G., Fodor, Z. et al. The QCD equation of state with dynamical quarks. J. High Energ. Phys. 2010, 77 (2010). https://doi.org/10.1007/JHEP11(2010)077

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)077

Keywords

Navigation