Skip to main content
Log in

The Foundations of Fractional Calculus in the Mellin Transform Setting with Applications

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this article we study the basic theoretical properties of Mellin-type fractional integrals, known as generalizations of the Hadamard-type fractional integrals. We give a new approach and version, specifying their semigroup property, their domain and range. Moreover we introduce a notion of strong fractional Mellin derivatives and we study the connections with the pointwise fractional Mellin derivative, which is defined by means of Hadamard-type fractional integrals. One of the main results is a fractional version of the fundamental theorem of differential and integral calculus in the Mellin frame. In fact, in this article it will be shown that the very foundations of Mellin transform theory and the corresponding analysis are quite different to those of the Fourier transform, alone since even in the simplest non-fractional case the integral operator (i.e. the anti-differentiation operator) applied to a function \(f\) will turn out to be the \(\int _0^x f(u)du/u\) with derivative \((xd/dx)f(x).\) Thus the fundamental theorem in the Mellin sense is valid in this form, one which stands apart from the classical Newtonian integral and derivative. Among the applications two fractional order partial differential equations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. An important question is whether there exists a fractional integral operator of order \(\alpha > 0\) which is the counterpart of the fractional Marchaud derivative in the sense that the fundamental theorem of the calculus is also valid in the Fourier transform setting, thus that each operator is the inverse operator of the other, under certain conditions apart from \(f\) belonging to \(L^2 ( \mathbb {R} ).\) This problem is treated in the book of Samko ([54], pp. 14–24, 75–76, 85, 212). The proofs of his results are modeled upon the corresponding ones for Fourier series developed in [33], which is based upon a fundamental theorem of Westphal [60] and is cited regularly in the relevant literature. However, the fully complete fundamental theorem is unfortunately not there. His very useful volume, listing 318 books and papers in the field, with an elaborate author index, and excellent biographical notes after the eleven chapters, is carried out in a multidimensional setting.

References

  1. Ahlfors, L.V.: Complex Analysis. McGraw-Hill Int. Eds, New York (1978)

    Google Scholar 

  2. Angeloni, L., Vinti, G.: Approximation in variation by homothetic operators in multidimensional setting. Differ. Integral Equ. 26(5–6), 655–674 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Angeloni, L., Vinti, G.: Variation and approximation in multidimensional setting for Mellin integral operators. In: New Perspectives on Approximation and Sampling Theory, Festschrift in Honor of Prof. Butzer’s 85th birthday, Applied and Numerical Harmonic Analysis, Birkhaeuser (2014)

  4. Annaby, M.H., Butzer, P.L.: Mellin type differential equations and associated sampling expansions. Numer. Funct. Anal. Optim. 21, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, Complexity, Nonlinearity and Chaos, vol. 3. World Scientific, Hackensack, NJ (2012)

    MATH  Google Scholar 

  6. Bardaro, C., Mantellini, I.: Voronovskaya-type estimates for Mellin convolution operators. Result Math. 50, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bardaro, C., Mantellini, I.: Quantitative Voronovskaja formula for Mellin convolution operators. Mediterr. J. Math. 7(4), 483–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardaro, C., Mantellini, I.: Approximation properties for linear combinations of moment type operators. Comput. Math. Appl. 62, 2304–2313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardaro, C., Mantellini, I.: On the iterates of Mellin–Fejer convolution operators. Acta Appl. Math. 121(1), 213–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardaro, C., Mantellini, I.: On Voronovskaja formula for linear combinations of Mellin–Gauss–Weierstrass operators. Appl. Math. Comput. 218, 10171–10179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bardaro, C., Mantellini, I.: On the moments of the bivariate Mellin–Picard type kernels and applications. Integral Transform Spec. Funct. 23(2), 135–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bardaro, C., Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae. Integral Transform Spec. Funct. 25(3), 182–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. Walter De Gruyter, Berlin (2003)

    Book  MATH  Google Scholar 

  14. Boccuto, A., Candeloro, D., Sambucini, A.: Vitali-type theorems for filter convergence related to Riesz space-valued modulars and applications to stochastic processes. J. Math. Anal. Appl. 419(2), 818–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bryckhov, YuA, Glaeske, H.-J., Prudnikov, A.P., Vu, K.T.: Multidimensional Integral Transformations. Gordon and Breach, Philadelphia (1992)

    MATH  Google Scholar 

  16. Butzer, P.L.: Legendre transform method in the solution of basic problems in algebraic approximation. In: Functions, Series, Operators, (Proceedings of the Conference on Budapest, 1980, dedicated to to L. Fejer and F. Riesz on their hundredth birthday), Vol. I, pp. 277–301. Coll. Math. Coc. Janos Bolyai, 35, North-Holland (1883)

  17. Butzer, P.L., Bardaro, C., Mantellini, I.: Mellin Analysis and Exponential Sampling, Part I: Mellin fractional integrals. In: Proceedings of 10th International Conference on Sampling Theory and Applications, Eurasip Open Library (2013)

  18. Butzer, P.L., Jansche, S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3, 325–375 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Butzer, P.L., Jansche, S.: Mellin transform theory and the role of its differential and integral operators. In: Proceedings of the Second International Workshop ”Transform Methods and Special Functions”, Varna, pp. 63–83 (1996)

  20. Butzer, P.L., Jansche, S.: A self-contained approach to Mellin transform analysis for square integrable functions, applications. Integral Transforms Spec. Funct. 8, 175–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Butzer, P.L., Jansche, S.: Mellin-Fourier series and the classical Mellin transform. Approximation in Mathematics (Memphis, 1997). Comput. Math. Appl. 40(1), 49–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integral. J. Math. Anal. Appl. 269, 1–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Stirling functions of the second kind in the setting of difference and fractional calculus. Numer. Funct. Anal. Optimiz. 4(7–8), 673–711 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Generalized Stirling functions of second type and representation of fractional order difference via derivatives. J. Differ. Equ. Appl. 9, 503–533 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Butzer, P.L., Kilbas, A.A., Rodrigues-Germá, L., Trujillo, J.J.: Stirling functions of first kind in the setting of fractional calculus and generalized differences. J. Differ. Equ. Appl. 13(8–9), 683–721 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, vol. I. Academic Press, New York (1971)

    Book  MATH  Google Scholar 

  29. Butzer, P.L., Schmeisser, G., Stens, R.L.: Shannon’s sampling theorem for bandlimited signls and their Hilbert transform. Boas-type formulae for higer order derivatives—The aliasing error involved their extensions from bandlimited to non-bandlimited signals. Entropy 14(11), 2192–2226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Butzer, P.L., Stens, R.L.: The operational properties of the Chebyshev transform. II. Fractional derivatives, in The theory of the approximation of functions, (Proceedings of the International Conference, Kaluga, 1975)” (Russian), pp. 49–61, ”Nauka”, Moscow (1977)

  31. Butzer, P.L., Stens, R.L.: Chebyshev transform methods in the theory of best algebraic approximation. Abh. Math. Sem. Hamburg 45, 165–190 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Butzer, P.L., Stens, R.L. Wehrens, M.: Higher Moduli of Continuity Based on the Jacobi Translation Operator and Best Approximation. C.R. Math. Rep. Acad. Sci. Canada 2, pp. 83–87 (1980)

  33. Butzer, P.L., Westphal, U.: An access to fractional differentiation via fractional differece quotients, in Fractional calculus and its Applications. In: Proceedings of the Conference on New Haven. Lecture Notes in Math, vol. 457, pp. 116–145. Springer, Heidelberg (1975)

  34. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hifler, H. (ed.) Applications of Fractional Calculus in Physics, pp. 1–85. Wordl Scientific Publ., Singapore (2000)

    Chapter  Google Scholar 

  35. Elschner, J., Graham, I.G.: Numerical methods for integral equations of Mellin type. J. Comput. Appl. Math. 125, 423–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Glaeske, H.-J., Prudnikov, A.P., Skornik, K.A.: Operational Calculus and Related Topics. Chapman and Hall, CRC, Boca Raton (2006)

    Book  MATH  Google Scholar 

  37. Glushak, A.V., Manaenkova, T.A.: Direct and inverse problems for an abstract differential equation containing Hadamard fractional derivatives. Differ. Equ. 47(9), 1307–1317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, IV edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  39. Hadamard, J.: Essai sur l’etude des fonctions donnees par leur developpement de Taylor. J. Math. Pures et Appl., Ser 4 8, 101–186 (1892)

    MATH  Google Scholar 

  40. Hilfer, R.: Applications of Fractional Calculus in Physics. World scientific Publ, Singapore (2000)

    Book  MATH  Google Scholar 

  41. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  43. Kolbe, W., Nessel, R.J.: Saturation theory in connections with the Mellin transform methods. SIAM J. Math. Anal. 3(2), 246–262 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kou, C., Liu, J., Ye, Y.: Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations, Discrete Dyn. Nat. Soc., vol 2010, Article ID 142175, (2010)

  45. Mamedov, R.G.: The Mellin Transform and Approximation Theory. Elm, Baku (1991). in Russian

    MATH  Google Scholar 

  46. Mamedov, R.G., Orudhzev, G.N.: The Approximation of Functions by Singular Integrals of the Mellin Type. Inst. Nefti i Khimii, Baku (1979). Russian

    Google Scholar 

  47. Mamedov, R.G., Orudhzev, G.N.: Some Characteristics of Classes of Functions that have Fractional Derivatives (Russian). In: Investigations on some questions of the constructive theory of functions and differential equations, pp. 3–11. Inst. Nefti i Khimii, Baku (1981)

  48. Mamedov, R.G., Orudhzev, G.N.: Some Classes of Functions, their Interconnection and Characteristics (Russian). In: Investigations on some questions of the constructive theory of functions and differential equations, pp. 12–15. Inst. Nefti i Khimii, Baku (1981)

  49. Mantellini, I.: On the asymptotic behaviour of linear combinations of Mellin–Picard type operators. Math. Nachr. 286(17–18), 1820–1832 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Martinez, C., Sanz, M., Martinez, D.: About fractional integrals in the space of locally integrable functions. J. Math. Anal. Appl. 167, 111–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Oberhettinger, F.: Tables of Mellin Transform. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  52. Prudnikov, A.P., Bryckhov, YuA, Marichev, O.I.: Calculation of integrals and the Mellin transform. Translated in J. Soviet. Math. 54(6), 1239–1341 (1991). Russian

  53. Qassim, M.D., Furati, K.M., Tatar, N.-E.: On a Differential Equation Involving Hilfer–Hadamard Fractional Derivative. Abstr. Appl. Anal., vol. 2012 Article ID 391062 (2012)

  54. Samko, S.G.: Hypersingular Integrals and their Applications. Analytical Methods and Special Functions. Taylor and Francis, London (2002)

    MATH  Google Scholar 

  55. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  56. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  57. Stens, R.L., Wehrens, M.: Legendre transform methods and best algebraic approximation. Ann. Soc. Math. Polon. Ser. I: Comment. Math. 21, 351–380 (1979)

    MathSciNet  MATH  Google Scholar 

  58. Szmydt, Z., Ziemian, B.: The Mellin Transformation and Fuchsian Type Partial Differential Equations. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  59. Vinti, C.: Opere Scelte. Universitá di Perugia, Aracne Editrice, Roma (2008)

    Google Scholar 

  60. Westphal, U.: An approach to fractional powers of operators via fractional differences. Proc. Lond. Math. Soc. 29(3), 557–576 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2786 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zayed, A.I.: Handbook of Function and Generalized Function Transformations, vol. Mathematical Sciences Reference Series. CRC Press, Boca Raton (1996)

  63. Zemanian, A.H.: Generalized Integral Transformations. Interscience, New York (1968)

Download references

Acknowledgments

The authors would like to thank Boris Ivanovich Golubov (Moscow) for his great help in regard to the short biography of R.G. Mamedov. He contacted his colleague in Baku, who in turn received a four pages biography of Mamedov together with a list of his publications kindly sent by his son Aykhan Mammadov, and made a first translation of this biography. The present biography is the extended and polished version kindly carried out by Peter Oswald (Bremen). The authors are grateful to Aykhan Mammadov for his extraordinary help in regard to various aspects of his father’s life, Azerbaijan, and the paper itself. The translation of the preface of [45] is due to Andi Kivinukk (Tallinn). Also, the authors wish to thank Anna Rita Sambucini for her technical support in including photos in the text. The first and third authors have been partially supported by the Gruppo Nazionale Analisi Matematica, Probabilità e Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), through the INdAM—GNAMPA Project 2014, and by the Department of Mathematics and Computer Sciences of University of Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bardaro.

Additional information

Communicated by Hans G. Feichtinger.

This article is a far-reaching extension of the paper “Mellin analysis and exponential sampling. Part I: Mellin fractional integrals” ( jointly with C. Bardaro and P.L. Butzer, see [17] ), presented by Ilaria Mantellini at “SAmpta2013”, held at Jacobs University, Bremen, on 1–5 July, 2013, and was conducted by Goetz Pfander, Peter Oswald, Peter Massopust and Holger Rauhut. The meeting marked two decades of SAmpta Workshops [held at Riga (1995), Aveiro (1997), Loen (1999), Tampa (2001), Strobl (2003), Samsun (2005), Marseille (2007), Singapore (2009) ] and the Commemoration of the 85th Birthday of P.L. Butzer. In Memory of Rashid Gamid-oglu Mamedov, a pioneer in Mellin Analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardaro, C., Butzer, P.L. & Mantellini, I. The Foundations of Fractional Calculus in the Mellin Transform Setting with Applications. J Fourier Anal Appl 21, 961–1017 (2015). https://doi.org/10.1007/s00041-015-9392-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9392-3

Keywords

Mathematics Subject Classification

Navigation