Skip to main content
Log in

A procedure to design optimum composite plates using implicit decision trees

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a novel methodology to minimize the weight of a composite plate, taking into account both its structural integrity and its manufacturing constraints. This optimization problem has been abstracted, and reduced to, a graph problem where finding the optimum is equivalent to finding the shortest path in the graph. This graph is an implicit ternary decision tree and path finding is accomplished with a parallelized breadth-first search procedure. As a result of this search, the procedure is able to provide both a global optimum and a Pareto front. The implementation of an implicit decision tree as a way to optimize a laminate stacking sequence is a novel idea, in spite that both issues have been tackled in numerous publications separately. Its benefits are clearly stated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bailie JA, Ley RP, Pasricha A (1997) A summary and review of composite laminate design guidelines. NASA Contract NAS1–19347

  • Dechter R, Judea P (1985) Generalized best-first search strategies and the optimality of a. J ACM 32(3):505–536. doi:10.1145/3828.3830

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Eckold G (1994) Design and manufacture of composite structures. Woodhead Publishing

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley Longman. Inc 1989 ISBN 0–201–15767-5

  • Guttag JV (2013) Introduction to computation and programming using python. MIT Press

  • Haichao A, Shenyan C, Hai H (2015) Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct Multidiscip Optim 51(4):903–918

    Article  Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE: Transactions on Systems Science and Cybernetics SSC4-4(2):100–107. doi:10.1109/TSSC.1968.300136

    Google Scholar 

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Computing In Science & Engineering 9(3):90–95

    Article  Google Scholar 

  • Irisarri F-X, Lasseigne A, Leroy FH, Le Riche R (2014) Optimal design of laminates composite structures with ply drop using stacking sequences tables. Compos Struct 107:559–569

    Article  Google Scholar 

  • Jones RM (1999) Mechanics of composite materials. (Materials Science & Engineering Series) Taylor & Francis

  • Kasyanov VN, Kasyanova EV (2013) Information visualization based on graph models. Eng Optim 17(2):187–197

    Google Scholar 

  • Koenig S, Likhachev M, Liu Y, Furcy D (2004) Incremental heuristic search in AI. AI Mag 25(2):99–112

    Google Scholar 

  • Kollár LP, Springer GS (2003) Mechanics of composite structures. Cambridge University Press. ISBN 978–0–521-80165-2

  • Kawamoto A, Bendsoe MP, Sigmund O (2004) Planar articulated mechanism design by graph theoretical enumeration. Struct Multidiscip Optim 27(4):295–299

    Article  Google Scholar 

  • Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956

    Article  MATH  Google Scholar 

  • Le Riche R, Haftka RT (1995) Improved genetic algorithm for minimun thickness laminate design. Compos Eng 5(2):143–161

    Article  Google Scholar 

  • Lopez RH, Luersen MA, Cursi ES (2009) Optimization of laminated composites considering different failure criteria. Compos Part B 40(8):731–740

    Article  Google Scholar 

  • Manan A, Vio GA, Harmin MY (2010) Optimization of aerolastic composite structures using evolutionary algorithms. Eng Optim 42(2):171–181

    Article  Google Scholar 

  • Peng H, Wang B, Tian K, Li G, Du K, Niu F (2016b) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54(4):1350–1363. doi:10.2514/1.J054445

    Article  Google Scholar 

  • Peng H, Bo W, Kaifan D, Gang L, Kuo T, Yu S, Yunlong M (2016a) Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach. Compos Struct 136:405–413

    Article  Google Scholar 

  • Peng H, Xiaojie Y, Hongliang L, Bo W, Chen L, Dixiong Y, Shuangxi Z (2017) Isogeometric buckling analysis of composite variable-stiffness panels. Compos Struct 165:192–208

    Article  Google Scholar 

  • Peng H, Bo W, Gang L, Zeng M, Lipeng W (2015) Hybrid framework for reliability-Based design optimization of imperfect stiffened shells. AIAA J 53(10):2878–2889

    Article  Google Scholar 

  • Peng H, Bo W, Gang L (2012) Surrogate-Based optimum Design for Stiffened Shells with adaptive sampling. AIAA J 50(11):2389–2407

    Article  Google Scholar 

  • Python 2.7.11 documentation (2015) URL: https://docs.python.org/2.7/

  • Rusell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Pearson. ISBN 10:1292153962

  • Stenz A (1994) Optimal and efficient planning for partially-known environments. Proceedings of the IEEE international Conference on Robotic and Automation. (ICRA 94), p 3310–3317

  • West DB (2002) Introduction to graph theory. TBS. ISBN: 8120321421

  • Wang W, Guo S, Chang N, Zhao F (2010) A modified ant colony algorithm for the stacking sequence optimization of a rectangular laminate. Struct Multidiscip Optim 41(5):711–720

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sanz-Corretge.

Appendix 1

Appendix 1

In appendix 1 a demonstration of \( \overrightarrow{{\ \left\Vert \varepsilon \right\Vert}^{\acute{\mkern6mu}}}<\overrightarrow{\left\Vert \varepsilon \right\Vert } \) is shown with a counter-example.

Supposing the opposite, in particular considering the case where:

$$ \overrightarrow{{\ \left\Vert \varepsilon \right\Vert}^{\acute{\mkern6mu}}}>\overrightarrow{\left\Vert \varepsilon \right\Vert } $$
(14a)
$$ \overrightarrow{\varepsilon^{\acute{\mkern6mu}}}=\overrightarrow{\varepsilon}+\alpha \overrightarrow{\varepsilon}\ being\ 0<\alpha $$
(14b)

‘α’ being a positive scalar, then the following must be true:

$$ \left(\begin{array}{c}{\varepsilon}_x\\ {}{\varepsilon}_y\\ {}{\gamma}_{x y}\end{array}\right)-\left(\begin{array}{c}{\varepsilon^{\acute{\mkern6mu}}}_x\\ {}{\varepsilon^{\acute{\mkern6mu}}}_y\\ {}{\gamma^{\acute{\mkern6mu}}}_{x y}\end{array}\right)=-\alpha \left(\begin{array}{c}{\varepsilon}_x\\ {}{\varepsilon}_y\\ {}{\gamma}_{x y}\end{array}\right) $$
(15)

Then, from (10), it follows:

$$ \begin{array}{l}\left(\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right)=\left\{\left[\left(1+\alpha \right){\left(\begin{array}{c}\hfill {\varepsilon}_x\hfill \\ {}\hfill {\varepsilon}_y\hfill \\ {}\hfill {\gamma}_{x y}\hfill \end{array}\right)}^T\right]\boldsymbol{A}\left[-\alpha \left(\begin{array}{c}\hfill {\varepsilon}_x\hfill \\ {}\hfill {\varepsilon}_y\hfill \\ {}\hfill {\gamma}_{x y}\hfill \end{array}\right)\right]\right\}-\lambda \hfill \\ {} being\ \lambda, \alpha >0\hfill \end{array} $$
(16)

Then factoring the above (16):

$$ \begin{array}{l}\left(\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right)=\left\{\left(-\alpha -{\alpha}^2\right)\left[\boxed{{\left(\begin{array}{c}\hfill {\varepsilon}_x\hfill \\ {}\hfill {\varepsilon}_y\hfill \\ {}\hfill {\gamma}_{x y}\hfill \end{array}\right)}^T\mathbf{A}\left(\begin{array}{c}\hfill {\varepsilon}_x\hfill \\ {}\hfill {\varepsilon}_y\hfill \\ {}\hfill {\gamma}_{x y}\hfill \end{array}\right)}\right]\right\}-\lambda \hfill \\ {} being\ \lambda, \alpha >0\hfill \end{array} $$
(17)

Since A is symmetric and positively definite the squared term in (17) is a positive scalar and this (17) cannot be cancelled. Thus, it can be concluded that the starting point ((14)) is wrong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz-Corretge, J. A procedure to design optimum composite plates using implicit decision trees. Struct Multidisc Optim 56, 1169–1183 (2017). https://doi.org/10.1007/s00158-017-1711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1711-7

Keywords

Navigation