Skip to main content
Log in

A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications. However, due to their miniature size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area. Recently, carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field. Since CNTs usually form stabilized bundles due to van der Waals interactions, they are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. An overview of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and applications of polymer/CNT composites are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69(10), 1486–1498.

    Article  CAS  Google Scholar 

  2. Pötschke, P.; Abdel-Goad, M.; Alig, I.; Dudkin, S.; Lellinger, D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 2004, 45(26), 8863–8870.

    Article  CAS  Google Scholar 

  3. Bibi, S.; Yasin, T.; Hassan, S.; Riaz, M.; Nawaz, M. Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal. Mater. Sci. Eng., C 2015, 46, 359–365.

    Article  CAS  Google Scholar 

  4. Mendoza, N. M.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R. Magnetic binary nanofillers. Physica B 2012, 407(16), 3203–3205.

    Article  CAS  Google Scholar 

  5. Tan, Y.; Zhang, H.; Liu, H. H.; Hou, L. C.; Jin, Y. M.; Zhang, X. X. 4-Aminobenzoic acid functionalized PAN-base carbon fibers in mild polyphosphoric acid/phosphorous pentoxide. Adv. Mater. Res. 2011, 332, 219–222.

    Article  CAS  Google Scholar 

  6. Assali, M.; Leal, M. P.; Fernández, I.; Romero-Gomez, P.; Baati, R.; Khiar, N. Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail. Nano Res. 2010, 3(11), 764–778.

    Article  CAS  Google Scholar 

  7. Kim, M. T.; Rhee, K. Y.; Park, S. J.; Hui, D. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Compos. Part B-Eng. 2012, 43(5), 2298–2302.

    Article  CAS  Google Scholar 

  8. Fu, J.; Huang, X.; Huang, Y.; Zhang, J.; Tang, X. One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes. Chem. Commun. 2009, 9, 1049–1051.

    Article  Google Scholar 

  9. Liu, L.; Etika, K. C.; Liao, K. S.; Hess, L. A.; Bergbreiter, D. E.; Grunlan, J. C. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol. Rapid Commun. 2009, 30(8), 627–632.

    Article  CAS  PubMed  Google Scholar 

  10. Kingston, C.; Zepp, R.; Andrady, A.; Boverhof, D.; Fehir, R.; Hawkins, D.; Vejins, V. Release characteristics of selected carbon nanotube polymer composites. Carbon 2014, 68, 33–57.

    Article  CAS  Google Scholar 

  11. May, C. A., Tanaka, Y., "Epoxy Resin: Chemistry and Technology" Marcel Dekker, New York, 1973.

    Google Scholar 

  12. Xie, H.; Liu, B.; Yuan, Z.; Shen, J.; Cheng, R. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 2004, 42(20), 3701–3712.

    Article  CAS  Google Scholar 

  13. Jia, W.; Tchoudakov, R.; Joseph, R.; Narkis, M.; Siegmann, A. The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites. J. Appl. Polym. Sci. 2002, 85(8), 1706–1713.

    Article  CAS  Google Scholar 

  14. Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35(3), 357–401.

    Article  CAS  Google Scholar 

  15. Thakre, P. R.; Bisrat, Y.; Lagoudas, D. C. Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites. J. Appl. Polym. Sci. 2010, 116(1), 191–202.

    Article  CAS  Google Scholar 

  16. Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34(8), 783–810.

    Article  CAS  Google Scholar 

  17. Micheli, D.; Pastore, R.; Gradoni, G.; Primiani, V. M.; Moglie, F.; Marchetti, M. Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers. Acta Astronaut. 2013, 88, 61–73.

    Article  CAS  Google Scholar 

  18. Micheli, D.; Apollo, C.; Pastore, R.; Barbera, D.; Morles, R. B.; Marchetti, M.; Moglie, F. Optimization of multilayer shields made of composite nanostructured materials. IEEE Trans. Electromagn. Compat. 2012, 54(1), 60–69.

    Article  Google Scholar 

  19. Micheli, D.; Pastore, R.; Apollo, C.; Marchetti, M.; Gradoni, G.; Primiani, V. M.; Moglie, F. Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans. Microw. Theory Techn. 2011, 59(10), 2633–2646.

    Article  CAS  Google Scholar 

  20. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  21. Abdalla, M.; Dean, D.; Theodore, M.; Fielding, J.; Nyairo, E.; Price, G. Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 2010, 51(7), 1614–1620.

    Article  CAS  Google Scholar 

  22. Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A-Appl. S. 2010, 41(10), 1345–1367.

    Article  CAS  Google Scholar 

  23. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Long carbon chain molecules in circumstellar shells. Astrophys. J. 1987, 314, 352–355.

    Article  CAS  Google Scholar 

  24. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–606.

    Article  CAS  Google Scholar 

  25. Bethune, D. S.; Klang, C. H.; De Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.

    Article  CAS  Google Scholar 

  26. Chou, T. W., “Microstructural design of fiber composites” Cambridge University Press, 2005.

    Google Scholar 

  27. Collins, P. G.; Avouris, P. Nanotubes for Electronics. Sci. Am. 2000, 283(6), 62–69.

    Article  CAS  PubMed  Google Scholar 

  28. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283(5401), 512–514.

    Article  CAS  PubMed  Google Scholar 

  29. Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998, 394(6688), 52–55.

    Article  CAS  PubMed  Google Scholar 

  30. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289(5476), 94–97.

    Article  CAS  PubMed  Google Scholar 

  31. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, D. L. S.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388(6644), 756–758.

    Article  CAS  Google Scholar 

  32. Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Lee, R. S. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A 1998, 67(1), 29–37.

    Article  CAS  Google Scholar 

  33. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313(1), 91–97.

    Article  CAS  Google Scholar 

  34. Ren, Z. F.; Huang, Z. P.; Wang, D. Z.; Wen, J. G.; Xu, J. W.; Wang, J. H.; Reed, M. A. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 1999, 75(8), 1086–1088.

    Article  CAS  Google Scholar 

  35. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282(5391), 1105–1107.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, Z. P.; Xu, J. W.; Ren, Z. F.; Wang, J. H.; Siegal, M. P.; Provencio, P. N. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 1998, 73(26), 3845–3847.

    Article  CAS  Google Scholar 

  37. Ambrogi, V.; Gentile, G.; Ducati, C.; Oliva, M. C.; Carfagna, C. Multiwalled carbon nanotubes functionalized with maleated poly (propylene) by a dry mechano-chemical process. Polymer 2012, 53(2), 291–299.

    Article  CAS  Google Scholar 

  38. Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358(6383), 220–222.

    Article  CAS  Google Scholar 

  39. Zhang, Y.; Iijima, S. Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 1999, 75(20), 3087–3089.

    Article  CAS  Google Scholar 

  40. Zhang, X. X.; Li, Z. Q.; Wen, G. H.; Fung, K. K.; Chen, J.; Li, Y. Microstructure and growth of bamboo-shaped carbon nanotubes. Chem. Phys. Lett. 2001, 333(6), 509–514.

    Article  CAS  Google Scholar 

  41. Bower, C.; Zhu, W.; Jin, S.; Zhou, O. Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 2000, 77(6), 830–832.

    Article  CAS  Google Scholar 

  42. Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36(7), 914–944.

    Article  CAS  Google Scholar 

  43. Costa, P.; Silva, J.; Ansón-Casaos, A.; Martinez, M. T.; Abad, M. J.; Viana, J.; Lanceros-Mendez, S. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene- butadiene-styrene composites for large strain sensor applications. Compos. Part B-Eng. 2014, 61, 136–146.

    Article  CAS  Google Scholar 

  44. Karousis, N.; Tagmatarchis, N.; Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110(9), 5366–5397.

    Article  CAS  PubMed  Google Scholar 

  45. Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K. L.; Ng, S. C.; Hor, T. A. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 1998, 10(3), 718–722.

    Article  CAS  Google Scholar 

  46. Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994, 265(5176), 1212–1212.

    Article  CAS  PubMed  Google Scholar 

  47. Safadi, B.; Andrews, R.; Grulke, E. A. Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84(14), 2660–2669.

    Article  CAS  Google Scholar 

  48. Thostenson, E. T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35(16), L77–L80.

    Article  CAS  Google Scholar 

  49. Xia, H.; Wang, Q.; Li, K.; Hu, G. H. Preparation of polypropylene/carbon nanotube composite powder with a solid‐state mechanochemical pulverization process. J. Appl. Polym. Sci. 2004, 93(1), 378–386.

    Article  CAS  Google Scholar 

  50. Dondero, W. E.; Gorga, R. E. Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J. Polym. Sci., Part B: Polym. Phys. 2006, 44(5), 864–878.

    Article  CAS  Google Scholar 

  51. Velasco-Santos, C.; Martínez-Hernández, A. L.; Fisher, F. T.; Ruoff, R.; Castaño, V. M. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 2003, 15(23), 4470–4475.

    Article  CAS  Google Scholar 

  52. Blond, D.; Barron, V.; Ruether, M.; Ryan, K. P.; Nicolosi, V.; Blau, W. J.; Coleman, J. N. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate) based composites by the incorporation of poly(methyl methacrylate)‐ functionalized nanotubes. Adv. Funct. Mater. 2006, 16(12), 1608–1614.

    Article  CAS  Google Scholar 

  53. Weisenberger, M. C.; Grulke, E. A.; Jacques, D.; Rantell, A. T.; Andrewsa, R. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 2003, 3(6), 535–539.

    Article  CAS  PubMed  Google Scholar 

  54. Hou, H.; Ge, J. J.; Zeng, J.; Li, Q.; Reneker, D. H.; Greiner, A.; Cheng, S. Z. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 2005, 17(5), 967–973.

    Article  CAS  Google Scholar 

  55. Yang, J.; Hu, J.; Wang, C.; Qin, Y.; Guo, Z. Fabrication and characterization of soluble multi‐walled carbon nanotubes reinforced P(MMA-co-EMA) composites. Macromol. Mater. Eng. 2004, 289(9), 828–832.

    Article  CAS  Google Scholar 

  56. Sandler, J. K. W.; Pegel, S.; Cadek, M.; Gojny, F.; Van Es, M.; Lohmar, J.; Shaffer, M. S. P. A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers. Polymer 2004, 45(6), 2001–2015.

    Article  CAS  Google Scholar 

  57. Bhattacharyya, A. R.; Pötschke, P.; Abdel-Goad, M.; Fischer, D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem. Phys. Lett. 2004, 392(1), 28–33.

    Article  CAS  Google Scholar 

  58. Tai, N. H.; Yeh, M. K.; Liu, J. H. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement. Carbon 2004, 42(12), 2774–2777.

    Article  CAS  Google Scholar 

  59. Loos, M. R.; Yang, J.; Feke, D. L.; Manas-Zloczower, I.; Unal, S.; Younes, U. Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos. Part B-Eng. 2013, 44(1), 740–744.

    Article  CAS  Google Scholar 

  60. Bortz, D. R.; Merino, C.; Martin-Gullon, I. Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos. Sci. Technol. 2011, 71(1), 31–38.

    Article  CAS  Google Scholar 

  61. Wang, C. F.; Chang, F. C.; Kuo, S. W. "Handbook of Polybenzoxazine" ed., Elsevier, Amsterdam, 2011, p 579.

    Book  Google Scholar 

  62. Yang, C. C.; Lin, Y. C.; Wang, P. I.; Liaw, D. J.; Kuo, S. W. Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions. Polymer 2014, 55(8), 2044–2050.

    Article  CAS  Google Scholar 

  63. Chapartegui, M.; Barcena, J.; Irastorza, X.; Elizetxea, C.; Fernandez, M.; Santamaria, A. Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Compos. Sci. Technol. 2012, 72(4), 489–497.

    Article  CAS  Google Scholar 

  64. Chen, Q.; Xu, R.; Yu, D. Multiwalled carbon nanotube/ polybenzoxazine nanocomposites: preparation, characterization and properties. Polymer 2006, 47(22), 7711–7719.

    Article  CAS  Google Scholar 

  65. Huang, J. M.; Tsai, M. F.; Yang, S. J.; Chiu, W. M. Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites. J. Appl. Polym. Sci. 2011, 122(3), 1898–1904.

    Article  CAS  Google Scholar 

  66. Chang, C. M.; Liu, Y. L. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs. ACS Appl. Mater. Interfaces 2011, 3(7), 2204–2208.

    Article  CAS  PubMed  Google Scholar 

  67. Dumas, L.; Bonnaud, L.; Olivier, M.; Poorteman, M.; Dubois, P. Facile preparation of a novel high performance benzoxazine-CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties. Chem. Commun. 2013, 49(83), 9543–9545.

    Article  CAS  Google Scholar 

  68. Al-Saleh, M. H.; Al-Saidi, B. A.; Al-Zoubi, R. M. Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocom- posites. Polymer 2016, 89, 12–17.

    Article  CAS  Google Scholar 

  69. Al-Saleh, M. H.; Sundararaj, U. Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 2012, 50(19), 1356–1362.

    Article  CAS  Google Scholar 

  70. Al-Saleh, M. H.; Sundararaj, U. Morphological, electrical and electromagnetic interference shielding characterization of vapor grown carbon nanofiber/polystyrene nanocomposites. Polym. Int. 2013, 62(4), 601–607.

    Article  CAS  Google Scholar 

  71. Kurahatti, R. V.; Surendranathan, A. O.; Kori, S. A.; Singh, N.; Kumar, A. R.; Srivastava, S. Defence applications of polymer nanocomposites. Def. Sci. J. 2010, 60(5), 551–563.

    Article  CAS  Google Scholar 

  72. de Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013, 339(6119), 535–539.

    Article  PubMed  CAS  Google Scholar 

  73. Margolis, J. Ed. "Conductive polymers and plastics", Springer Science & Business Media, London, 2012.

    Google Scholar 

  74. Peng, C.; Zhang, S.; Jewell, D.; Chen, G. Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18(7), 777–788.

    Article  CAS  Google Scholar 

  75. Ayad, M. M.; Salahuddin, N.; Shenashin, M. A. The optimum HCl concentration for the in situ polyaniline film formation. Synth. Met. 2004, 142(1), 101–106.

    Article  CAS  Google Scholar 

  76. Liu, H.; Hu, X. B.; Wang, J. Y.; Boughton, R. I. Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 2002, 35(25), 9414–9419.

    Article  CAS  Google Scholar 

  77. Li, W.; Chen, J.; Zhao, J.; Zhang, J.; Zhu, J. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor. Mater. Lett., 2005, 59(7), 800–803.

    Article  CAS  Google Scholar 

  78. Swathy, T. S.; Jose, M. A.; Antony, M. J. AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites. Polymer 2016, 103, 206–213.

    Article  CAS  Google Scholar 

  79. Konyushenko, E. N.; Stejskal, J.; Trchová, M.; Hradil, J.; Kovářová, J.; Prokeš, J.; Sapurina, I. Multi-wall carbon nanotubes coated with polyaniline. Polymer 2006, 47(16), 5715–5723.

    Article  CAS  Google Scholar 

  80. Heimann, M.; Wirts-Ruetters, M.; Boehme, B.; Wolter, K. J. Investigations of carbon nanotubes epoxy composites for electronics packaging. IEEE 58th Electronic Components and Technology Conference. 2008, 1731–1736.

    Google Scholar 

  81. Mahapatra, S. S.; Yadav, S. K.; Yoo, H. J.; Cho, J. W.; Park, J. S. Highly branched polyurethane: synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Compos. Part B-Eng. 2013, 45(1), 165–171.

    Article  CAS  Google Scholar 

  82. Yang, Z.; McElrath, K.; Bahr, J.; D’Souza, N. A. Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite. Compos. Part B-Eng. 2012, 43(4), 2079–2086.

    Article  CAS  Google Scholar 

  83. Kim, M. T.; Rhee, K. Y.; Lee, J. H.; Hui, D.; Lau, A. K. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. Part B-Eng. 2011, 42(5), 1257–1261.

    Article  CAS  Google Scholar 

  84. Halder, S.; Ghosh, P. K.; Goyat, M. S.; Ray, S. Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J. Adhes. Sci. Technol. 2013, 27(2), 111–124.

    Article  CAS  Google Scholar 

  85. Ghosh, P. K.; Pathak, A.; Goyat, M. S.; Halder, S. Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite. J. Reinf. Plast. Compos. 2012, 31(17), 1180–1188.

    Article  CAS  Google Scholar 

  86. Halder, S.; Ghosh, P. K.; Goyat, M. S. Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite. High Perform. Polym. 2012, 24(4), 331–341.

    Article  CAS  Google Scholar 

  87. Chrissafis, K.; Bikiaris, D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 2011, 523(1), 1–24.

    Article  CAS  Google Scholar 

  88. Starkova, O.; Buschhorn, S. T.; Mannov, E.; Schulte, K.; Aniskevich, A. Creep and recovery of epoxy/MWCNT nanocomposites. Compos. Part A-Appl. S. 2012, 43(8), 1212–1218.

    Article  CAS  Google Scholar 

  89. Damian, C. M.; Garea, S. A.; Vasile, E.; Iovu, H. Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos. Part B-Eng. 2012, 43(8), 3507–3515.

    Article  CAS  Google Scholar 

  90. Sahoo, N. G.; Cheng, H. K. F.; Li, L.; Chan, S. H.; Judeh, Z.; Zhao, J. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Adv. Funct. Mater. 2009, 19(24), 3962–3971.

    Article  CAS  Google Scholar 

  91. Ma, P. C.; Zheng, Q. B.; Mäder, E.; Kim, J. K. Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polymer 2012, 53(26), 6081–6088.

    Article  CAS  Google Scholar 

  92. Hwang, G. L.; Shieh, Y. T.; Hwang, K. C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv. Funct. Mater. 2004, 14(5), 487–491.

    Article  CAS  Google Scholar 

  93. Rathore, D. K.; Prusty, R. K.; Ray, B. C. Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures: an emphasis on the role of carboxyl functionalization. J. Appl. Polym. Sci. 2017, DOI: 10.1002/app.44851

    Google Scholar 

  94. Garg, M.; Sharma, S.; Mehta, R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites. Compos. Part A-Appl. S. 2015, 76, 92–101.

    Article  CAS  Google Scholar 

  95. Luan, J.; Zhang, A.; Zheng, Y.; Sun, L. Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Compos. Part A-Appl. S. 2012, 43(7), 1032–1037.

    Article  CAS  Google Scholar 

  96. Theodore, M; Hosur, M.; Thomas, J.; Jeelani, S. Influence of functionalization on properties of MWCNT-epoxy nanocomposites. Mater. Sci. Eng., A. 2011, 528(3), 1192–1200.

    Article  CAS  Google Scholar 

  97. Tseng, C. H.; Wang, C. C.; Chen, C. Y. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 2007, 19(2), 308–315.

    Article  CAS  Google Scholar 

  98. Starkova, O.; Buschhorn, S. T.; Mannov, E.; Schulte, K.; Aniskevich, A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013, 49(8), 2138–2148.

    Article  CAS  Google Scholar 

  99. Prolongo, S. G.; Gude, M. R.; Urena, A. Water uptake of epoxy composites reinforced with carbon nanofillers. Compos. Part A-Appl. S. 2012, 43(12), 2169–2175.

    Article  CAS  Google Scholar 

  100. Starkova, O.; Chandrasekaran, S.; Prado, L. A. S. A.; Tölle, F.; Mülhaupt, R.; Schulte, K. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites. Polym. Degrad. Stab. 2013, 98(2), 519–526.

    Article  CAS  Google Scholar 

  101. Sudha, J. D.; Sivakala, S.; Prasanth, R.; Reena, V. L.; Nair, P. R. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA: Preparation and properties. Compos. Sci. Technol. 2009, 69(3), 358–364.

    Article  CAS  Google Scholar 

  102. Krakovský, I.; Pleštil, J.; Almásy, L. Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS. Polymer 2006, 47(1), 218–226.

    Article  CAS  Google Scholar 

  103. Krakovský, I.; Varga, M.; Ferrer, G. G.; Serra, R. S. I.; Salmerón-Sánchez, M. Structure and properties of epoxy/polyaniline nanocomposites. J. Non-Cryst. Solids 2012, 358(2), 414–419.

    Article  CAS  Google Scholar 

  104. Deng, H.; Cao, Q.; Wang, X.; Chen, Q.; Kuang, H.; Wang, X. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites. Mater. Sci. Eng. A-Struct. 2011, 528(18), 5759–5763.

    Article  CAS  Google Scholar 

  105. Deng, L.; Han, M. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 2007, DOI: 10.1063/1.2755875

    Google Scholar 

  106. Lin, H.; Zhu, H.; Guo, L. Y. Materials processing by simple shear. Mater. Lett. 2007, 61(2), 3547–3550.

    Article  CAS  Google Scholar 

  107. Silva, V. A.; Folgueras, L. D. C.; Cândido, G. M.; Paula, A. L. D.; Rezende, M. C.; Costa, M. L. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Mater. Res. 2013, 16(6), 1299–1308.

    Article  CAS  Google Scholar 

  108. Kim, Y. J.; Kim, S. S. Microwave absorbing properties of co-substituted Ni 2 W hexaferrites in Ka-band frequencies (26.5−40 GHz). IEEE Trans. Magn. 2002, 38(5), 3108–3110.

    Article  CAS  Google Scholar 

  109. Petrov, V. M.; Gagulin, V. V. Microwave absorbing materials. Inorg. Mater. 2001, 37(2), 93–98.

    Article  CAS  Google Scholar 

  110. Folgueras, L. D. C.; Alves, M. A.; Rezende, M. C. Electromagnetic radiation absorbing paints based on carbonyl iron and polyaniline. 2009 SBMO/IEEE MTT-S International Microwave And Optoelectronics Conference. 2009, 510–513.

    Chapter  Google Scholar 

  111. Yusoff, A. N.; Abdullah, M. H. Microwave electromagnetic and absorption properties of some LiZn ferrites. J. Magn. Magn. Mater. 2004, 269(2), 271–280.

    Article  CAS  Google Scholar 

  112. Sen, R.; Zhao, B.; Perea, D.; Itkis, M. E.; Hu, H.; Love, J.; Haddon, R. C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 2004, 4(3), 459–464.

    Article  CAS  Google Scholar 

  113. Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39(2), 279–285.

    Article  CAS  Google Scholar 

  114. Joo, J.; Lee, C. Y. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl. Phys. 2000, 88(1), 513–518.

    Article  CAS  Google Scholar 

  115. Hu, J.; Jia, F.; Song, Y. F. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chem. Eng. J. 2017, 326, 273–280.

    Article  CAS  Google Scholar 

  116. Xue, L.; Wang, W.; Guo, Y.; Liu, G.; Wan, P. Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensor. Actuat. B-Chem. 2017, 244, 47–53.

    Article  CAS  Google Scholar 

  117. Kumar, A.; Ghosh, P. K.; Yadav, K. L.; Kumar, K. Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos. Part B-Eng. 2017, 113, 291–299.

    Article  CAS  Google Scholar 

  118. Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Tucci, V.; Russo, S. Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures. Compos. Part B-Eng. 2016, 107, 192–202.

    Article  CAS  Google Scholar 

  119. Saadattalab, V.; Shakeri, A.; Gholami, H. Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices. Prog. Nat. Sci. 2016, 26(6), 517–522.

    Article  CAS  Google Scholar 

  120. Zhang, B.; Shi, R.; Zhang, Y.; Pan, C. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation. Prog. Nat. Sci. 2013, 23(2), 164–169.

    Article  CAS  Google Scholar 

  121. Olad, A.; Barati, M.; Behboudi, S. Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron. Prog. Org. Coat. 2012, 74(1), 221–227.

    Article  CAS  Google Scholar 

  122. Diamanti, K.; Soutis, C. Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 2010, 46(8), 342–352.

    Article  Google Scholar 

  123. Gohardani, O.; Elola, M. C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 2014, 70, 42–68.

    Article  Google Scholar 

  124. Gohardani, A. S.; Doulgeris, G.; Singh, R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the electric commercial aircraft. Prog. Aerosp. Sci. 2011, 47(5), 369–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Siddiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, S., Siddiq, M., Kausar, A. et al. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. Chin J Polym Sci 36, 445–461 (2018). https://doi.org/10.1007/s10118-018-2045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2045-7

Keywords

Navigation