Skip to main content
Log in

35 Years of (AI) in Geotechnical Engineering: State of the Art

  • State-of-the-Art Review
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

It was 35 years ago since the first usage of Artificial Intelligence (AI) technique in geotechnical engineering, during those years many (AI) techniques were developed based in mathematical, statistical and logical concepts, but the breakthrough occurs by mimicking the natural searching and optimization algorithms. This huge development in (AI) techniques reflected on the geotechnical engineering problems. In this research, 626 paper and thesis published in the period from 1984 to 2019 concerned in applying (AI) techniques in geotechnical engineering were collected, filtered, arranged and classified with respect to subject, (AI) technique, publisher and publishing date and stored in a database. The extracted information from the database were tabulated, presented graphically and commented. The main conclusions is that the number of researches in this field increases almost exponentially, the most used (AI) technique is the Artificial Neural Networks and its enhancements where it is presents about half the researches and finally correlating soil and rock properties is the most addressed subject with about 30% of the researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdollahzadeh A, Mukhlisin M, El Shafie A (2011) Predict soil erosion with artificial neural network in Tanakami (Japan). Wseas Trans Comput 10(2):51–60

    Google Scholar 

  • Abdulabbas AA, Ulabbas YKB (2014) Estimation of shear strength parameters of soils using ann technique. Int J Civil Struct Environ Infrastruct Eng Res Dev 4(3):1–10

    Google Scholar 

  • Aboutaleb S, Mahmoud B, Raheb B, Behzad B (2018) Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ 77:1717–1728. https://doi.org/10.1007/s10064-017-1043-2

    Article  Google Scholar 

  • Adam TM (1992) Expert system for retaining wall selection Phase I. Report No. CDOT - DTD-R-93-5

  • Adarsh S, Dhanya R, Krishna G, Merlin R, Tina J (2012) Prediction of ultimate bearing capacity of cohesionless soils using soft computing techniques. Int Sch Res Netw. https://doi.org/10.5402/2012/628496

    Article  Google Scholar 

  • Adeli H (2001) Neural networks in civil engineering: 1989–2000. Comput Aided Civil Infrastruct Eng 16(2001):126–142

    Google Scholar 

  • Adoko AC, Wu L (2011) Fuzzy inference systems-based approaches in geotechnical engineering-a review. EJGE 16(2011):1543–1558

    Google Scholar 

  • Adoko A-C, Yu-Yong J, Li W, Hao W, Zi-Hao W (2013) Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network. Tunnel Undergr Space Technol 38(2013):368–376. https://doi.org/10.1016/j.tust.2013.07.023

    Article  Google Scholar 

  • Ahangar-Asra A, Javadi AA, Johari A, Chen Y (2014) Lateral load bearing capacity modelling of piles in cohesive soils in undrained conditions: An intelligent evolutionary approach. Appl Soft Comput J 2014:1–5. https://doi.org/10.1016/j.asoc.2014.07.027

    Article  Google Scholar 

  • Ahmadi-Nedushan B, Varaee H (2009) Optimal design of reinforced concrete retaining walls using a Swarm intelligence technique. In: First international conference on soft computing technology in civil, structural and environmental engineering, Scotland, Civil-Comp Press

  • Akram M, Ismail Abdul R, Irfana M (2014) A review on expert system and its applications in civil engineering. Int J Civil Eng Built Environ 1(1):2289–6317

    Google Scholar 

  • AlArfaj I, Amar K, Tuna E (2012) Application of advanced computational intelligence to rate of penetration prediction. In: 2012 UKSim-AMSS 6th European modelling symposium, pp 33–38, Doi: 10.1109/EMS.2012.79, IEEE

  • Alavi AH, Amir HG (2011a) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(2011):2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019

    Article  Google Scholar 

  • Alavi AH, Amir HG (2011b) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274. https://doi.org/10.1108/02644401111118132

    Article  Google Scholar 

  • Alavi AH, Amir HG (2012a) Discussion on ‘‘Models to predict the deformation modulus and the coefficient of subgrade reaction for earth filling structures’’ by Ismail Dinçer. Adv Eng Softw 52(2012):44–46. https://doi.org/10.1016/j.advengsoft.2012.06.001

    Article  Google Scholar 

  • Alavi AH, Amir HG (2012b) Energy-based numerical models for assessment of soil liquefaction. Geosci Front 3(4):541–555. https://doi.org/10.1016/j.gsf.2011.12.008

    Article  Google Scholar 

  • Alavi AH, Sadrossadat E (2016) New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses. Geosci Front 7(2016):91–99. https://doi.org/10.1016/j.gsf.2014.12.005

    Article  Google Scholar 

  • Alavi AHA, Gandomi AH, Gandomi M, Sadat Hosseini SS (2009) Prediction of maximum dry density and optimum moisture content of stabilised soil using RBF neural networks. IES J Part A Civil Struct Eng 2(2):98–106. https://doi.org/10.1080/19373260802659226

    Article  Google Scholar 

  • Alavi AH, Amir HG, Ali M, Ali AH, Azadeh R (2010) Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J Plant Nutr Soil Sci 173:368–379. https://doi.org/10.1002/jpln.200800233

    Article  Google Scholar 

  • Alavi AH, Pejman A, Amir HG, Milad AE (2011) Genetic-based modeling of uplift capacity of suction caissons. Expert Syst Appl 38(2011):12608–12618. https://doi.org/10.1016/j.eswa.2011.04.049

    Article  Google Scholar 

  • Alavi AH, Amir HG, Ali M, Jafar BB (2013) Linear and tree-based genetic programming for solving geotechnical engineering problems. Metaheuristics Water Geotech Transp Eng 2013:289–310. https://doi.org/10.1016/B978-0-12-398296-4.00012-X

    Article  Google Scholar 

  • Alavi AH, Gandomi AH, Lary DJ, Alavi AH (2016) Progress of machine learning in geosciences: preface. Geosci Front 7(2016):1–2. https://doi.org/10.1016/j.gsf.2015.10.006

    Article  Google Scholar 

  • Al-Homoud AS, Al-Masri GA (1999) CSEES: an expert system for analysis and design of cut slopes and embankments. Environ Geol 39(1):75–89

    Google Scholar 

  • Al-Homoud AS, Tahtamoni WW (2000) SARETL: an expert system for probabilistic displacement-based dynamic 3-D slope stability analysis and remediation of earthquake triggered landslides. Environ Geol 39(8):849–874

    Google Scholar 

  • Alias R, Anuar K, Mohd RT (2015) Artificial neural networks approach for predicting the stability of cantilever RC retaining walls. Int J Appl Eng Res 10(10):26005–26014

    Google Scholar 

  • Alimoradi A, James LB (2014) Machine-learning methods for earthquake ground motion analysis and simulation. J Eng Mech. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000869

    Article  Google Scholar 

  • Alimoradi A, Hashem S, Abolghasem KR (2011) Prediction of shear wave velocity in underground layers using SASW and artificial neural networks. Engineering 3:266–275. https://doi.org/10.4236/eng.2011.33031

    Article  Google Scholar 

  • Alireza K, Mehdi J (2014) Heterogeneous slope stability optimization using firefly algorithm, simulate annealing and imperialistic competitive algorithm. Int Res J Appl Basic Sci 8(9):1222–1235

    Google Scholar 

  • Alkroosh ISJ (2011) Modelling pile capacity and load-settlement behaviour of piles embedded in sand and mixed soils using artificial intelligence, Ph.D. thesis, Curtin University

  • Alkroosh I, Hamid N (2012) Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Eng Appl Artif Intell 25(2012):618–627. https://doi.org/10.1016/j.engappai.2011.08.009

    Article  Google Scholar 

  • Alkroosh I, Nikraz H (2013) Evaluation of pile lateral capacity in clay applying evolutionary approach. Int J Geomate 4(1):462–465

    Google Scholar 

  • Alkroosh IS, Bahadori M, Nikraz H, Bahadori A (2015) Regressive approach for predicting bearing capacity of bored piles from cone penetration test data. J Rock Mech Geotech Eng 7:584–592. https://doi.org/10.1016/j.jrmge.2015.06.011

    Article  Google Scholar 

  • Alkrooshn I, Nikraz H (2014) Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils Found 54(2):233–242. https://doi.org/10.1016/j.sandf.2014.02.013

    Article  Google Scholar 

  • Al-Neami MA, Ami M (2015) Prediction of unconfined compressive strength of soil using artificial neural network. In: The 2nd international conference of buildings, construction and environmental engineering (BCEE2-2015)

  • Al-Rashid QA, Abuel-Naga HM, Leong E-CB, Lu Y, Al Abadi H (2018) Experimental-artificial intelligence approach for characterizing electrical resistivity of partially saturated clay liners. Appl Clay Sci 156(2018):1–10. https://doi.org/10.1016/j.clay.2018.01.023

    Article  Google Scholar 

  • Al-Rawas A, Saleh A-A, Adnan B, Yaqoob A-A (1998) Soil classification decision support system using an expert system approach. Eng J Univ Qatar 11(1998):103–115

    Google Scholar 

  • Al-saffar RZ, Suhail IK, Salim TY (2013) Prediction of soil’s compaction parameter using artificial neural network. Al-Rafidain Eng 27(3):15–27

    Google Scholar 

  • Alshkane YM (2017) Discussion on ‘‘property correlations and statistical variations in the geotechnical properties of (CH) clay soils’’. Geotech Geol Eng. https://doi.org/10.1007/s10706-017-0416-4

    Article  Google Scholar 

  • Al-Taie AJ, Ahmed FA, Zahir NMT (2017) Compression index and compression ratio prediction by artificial neural networks. J Eng 23(12):96–106

    Google Scholar 

  • Amegashie F, Shang JQ, Yanful EK, Ding W, Al-Martini S (2006) Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil. Can Geotech J 43(2006):100–109. https://doi.org/10.1139/T05-085

    Article  Google Scholar 

  • Amini M, Afyuni M, Fathianpour N, Khademi H, Fluhler H (2005) Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124(2005):223–233. https://doi.org/10.1016/j.geoderma.2004.05.009

    Article  Google Scholar 

  • Anakcı HC, Adil B, Hamza G (2009) Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput Appl 2009(18):1031–1041. https://doi.org/10.1007/s00521-008-0208-0

    Article  Google Scholar 

  • Andrab SG, Ali H, Zulkifli BY (2017) A review: evolutionary computations (GA and PSO) in geotechnical engineering. Comput Water Energy Environ Eng 6:154–179. https://doi.org/10.4236/cweee.2017.62012

    Article  Google Scholar 

  • Araei AA (2014) Artificial neural networks for modeling drained monotonic behavior of rockfill materials. Int J Geomech 14(04014005):1–15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000323

    Article  Google Scholar 

  • Ardakani A, Afshin K (2017) Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2017.1304269

    Article  Google Scholar 

  • Ardakani A, Kohestani VR (2015) Evaluation of liquefaction potential based on CPT results using C4.5 decision tree. J AI Data Mini 3(1):85–92. https://doi.org/10.5829/idosi.JAIDM.2015.03.01.09

    Article  Google Scholar 

  • Ardakani A, Vahid RK (2017) Prediction of lateral bearing capacity of pile in clay using support vector machine. J Civil Environ Eng 47(2):1–10

    Google Scholar 

  • Armaghani DJ, Mohsen H, Behnam YB, Aminaton M, Edy TM (2014) Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement 55(2014):487–498. https://doi.org/10.1016/j.measurement.2014.06.001

    Article  Google Scholar 

  • Armaghani DJ, Edy TM, Ehsan M, Mogana SN, Mohd FMA (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 74:301–1319. https://doi.org/10.1007/s10064-014-0687-4

    Article  Google Scholar 

  • Armaghani DJ, Edy TM, Ehsan M, Masoud M, Mogana SN (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(48):1–16. https://doi.org/10.1007/s12517-015-2057-3

    Article  Google Scholar 

  • Armaghani DJ, Roohollah SF, Hossein R, Ahmad SAR, Hassan BA (2018a) Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming. Neural Comput Appl 29:1115–1125. https://doi.org/10.1007/s00521-016-2618-8

    Article  Google Scholar 

  • Armaghani DJ, Vali S, Ahmad F, Mohd FMA, Masoud M, Mir AM (2018b) Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Comput Appl 30:3523–3532. https://doi.org/10.1007/s00521-017-2939-2

    Article  Google Scholar 

  • Arunakumari G, Latha GM (2008) Stress-strain prediction of jointed rocks using artificial neural networks. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1872–1879

  • Arunakumari G, Latha GM (2008) Numerical prediction of stress-strain response of jointed rocks. In: Continuum and distinct element numerical modeling in geo-engineering, ISBN 978-0-9767577-1-9

  • Asadi M (2016) Optimized Mamdani fuzzy models for predicting the strength of intact rocks and anisotropic rock masses. J Rock Mech Geotech Eng 8(2016):218–224. https://doi.org/10.1016/j.jrmge.2015.11.005

    Article  Google Scholar 

  • Asadi A (2017) Application of artificial neural networks in prediction of uniaxial compressive strength of rocks using well logs and drilling data. Procedia Eng 191(2017):279–286. https://doi.org/10.1016/j.proeng.2017.05.182

    Article  Google Scholar 

  • Asadi A, Hossein M, Bujang BKH, Alireza P, Mohd RT (2011) Artificial neural networks approach for electrochemical resistivity of highly organic soil. Int J Electrochem Sci 6(2011):1135–1145

    Google Scholar 

  • Asadizadeh M, Mohammad FH (2016) Predicting rock mass deformation modulus by artificial intelligence approach based on dilatometer tests. Arab J Geosci 9(96):1–15. https://doi.org/10.1007/s12517-015-2189-5

    Article  Google Scholar 

  • Asimakopoulou FE, Georgios JT, Ioannis FG, Ioannis AS (2011) Artificial neural network approach on the seasonal variation of soil resistance. In: 7th Asia-Pacific international conference on lightning, November 1–4, 2011, Chengdu, China, pp 794–799, 978-1-4577-1466-5/11/$26.00, IEEE

  • Attwa M, Khaled G, Mohamed E, Sara Z (2014) Application of genetic algorithm (GA) for soil characterization using DC resistivity data: a case study in Tenth of Ramadan city, Egypt. Adv Nat Appl Sci 8(1):38–50

    Google Scholar 

  • Aydin A (2004) Fuzzy set approaches to classification of rock masses. Eng Geol 74(2004):227–245. https://doi.org/10.1016/j.enggeo.2004.03.011

    Article  Google Scholar 

  • Babapour R, Naghdi R, Ghajar I, Ghodsi R (2015) Modeling the proportion of cut slopes rock on forest roads using artificial neural network and ordinal linear regression. Environ Monit Assess 2015:1–14. https://doi.org/10.1007/s10661-015-4688-y

    Article  Google Scholar 

  • Bafghi BK, Entezari ZH (2015) Prediction of permanent earthquake-induced deformation in earth dams and embankments using artificial neural networks. Civil Eng Infrastruct J 48(2):271–283

    Google Scholar 

  • Bandyopadhyay JK, Srinivas SY, Gauri KL (1995) Artificial neural networks and durability of sphinx limestone. J Mater Civil Eng 7:174–177

    Google Scholar 

  • Banimahd M, Yasrobi SS, Woodward PK (2005) Artificial neural network for stress–strain behavior of sandy soils: knowledge based verification. Comput Geotech 32:377–386. https://doi.org/10.1016/j.compgeo.2005.06.002

    Article  Google Scholar 

  • Barzegar R, Masoud S, Mohammad RN, Asghar AM (2016) Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, Case study: Azarshahr area, NW ran. Model Earth Syst Environ 2(76):1–13. https://doi.org/10.1007/s40808-016-0132-8

    Article  Google Scholar 

  • Basarira Hakan H, David S (2013) Assessment of slope stability using fuzzy sets and systems. Int J Min Reclam Environ 27(5):312–328. https://doi.org/10.1080/17480930.2012.702000

    Article  Google Scholar 

  • Basheer IA (2001) Empirical modeling of the compaction curve of cohesive soils. Can Geotech J 38:29–45

    Google Scholar 

  • Basheer IA (2002) Stress-strain behavior of geomaterials in loading reversal simulated by time-delay neural networks. J Mater Civil Eng 14(3):270–273. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(270)

    Article  Google Scholar 

  • Basma AA, Nabil K (2004) Modeling soil collapse by artificial neural networks. Geotech Geol Eng 22:427–438

    Google Scholar 

  • Basudhar PK (2008) Application of optimization and other evolutionary techniques in geotechnical engineering. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 133–145

  • Baykasog A, Hamza G, Hanifi C, Lale O (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35(2008):111–123. https://doi.org/10.1016/j.eswa.2007.06.006

    Article  Google Scholar 

  • Behrens T, Helga F, Thomas S, Ulrich S, Ernst-Dieter S, Michael G (2005) Digital soil mapping using artificial neural networks. J Plant Nutr Soil Sci 168:1–13.

    Google Scholar 

  • Bekdaş G, Rasim T (2017) Grey wolf optimizer for optimum design of reinforced concrete cantilever retaining walls. Int Conf Numer Anal Appl Math. https://doi.org/10.1063/1.5043893

    Article  Google Scholar 

  • Bekhor S, Moshe L (2013) Limitation of the artificial neural networks methodology for predicting the vertical swelling percentage of expansive clays. J Mater Civil Eng 25:1731–1741. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000720

    Article  Google Scholar 

  • Bekhor S, Moshe L (2014) Using the artificial neural networks methodology to predict the vertical swelling percentage of expansive clays. J Mater Civil Eng 26(06014007):1–5. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000931

    Article  Google Scholar 

  • Benardos AG, Kaliampakos DC (2004) Modelling TBM performance with artificial neural networks. Tunnel Undergr Space Technol 19(2004):597–605. https://doi.org/10.1016/j.tust.2004.02.128

    Article  Google Scholar 

  • Benbouras MA, Ratiba RK, Hamma Z, Alexandru-Ionut P, NourredineNourredine M, Fatiha D (2018) A new approach to predict the compression index using artificial intelligence methods. Mar Georesour Geotechnol 2018:1–18. https://doi.org/10.1080/1064119X.2018.1484533

    Article  Google Scholar 

  • Bernard E, Sardinha PRC (1993) Concept and practice of expert systems in civil engineering. Trans Inf Commun Technol 1:417–428

    Google Scholar 

  • Besalatpour A, Hajabbasi MA, Ayoubi S, Afyuni M, Jalalian A, Schulin R (2012a) Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system. Soil Sci Plant Nutr 58(2):149–160. https://doi.org/10.1080/00380768.2012.661078

    Article  Google Scholar 

  • Besalatpour A, Hajabbasi MA, Ayoubi S (2012) Using gamma test to determine the optimum input variables for soil shear strength prediction by neural networks. In: 8th international soil science congress on “land degradation and challenges in sustainable soil management”, Çeşme-İzmir, Turkey, pp 249–254

  • Besalatpour A, Ayoubi S, Hajabbasi MA, Yousefian Jazi A, Gharipour A (2014) Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Res Manag 28(2014):383–394. https://doi.org/10.1080/15324982.2013.871599

    Article  Google Scholar 

  • Bharanidhar TS, Premalatha J (2018) Advanced civil engineering optimization by artificial intelligent systems: review. J Res 3(12):2395–7549

    Google Scholar 

  • Bhardwaj AB, Venkatachalam G (2014) Landslide hazard evaluation using artificial neural networks and GIS. Landslide Sci Safer Geoenviron 2:397–403. https://doi.org/10.1007/978-3-319-05050-8_62

    Article  Google Scholar 

  • Bhargavi P, Jyothi S (2010) Fuzzy C-means classifier for soil data. Int J Comput Appl 6(4):0975–8887

    Google Scholar 

  • Bhatt S, Pradeep KJ (2014) Prediction of California bearing ratio of soils using artificial neural network. Am Int J Res Sci Technol Eng Math 8(2):156–161

    Google Scholar 

  • Bhattacharya BB, Solomatine DP (2006) Machine learning in soil classification. Neural Netw 19(2006):186–195. https://doi.org/10.1016/j.neunet.2006.01.005

    Article  Google Scholar 

  • Bilgili M (2010) Prediction of soil temperature using regression and artificial neural network models. Meteorol Atmos Phys 110:59–70. https://doi.org/10.1007/s00703-010-0104-x

    Article  Google Scholar 

  • Bilski A (2018) Survey of AI methods for the purpose of geotechnical profile creation. ACS. https://doi.org/10.1007/978-3-030-03314-9_2

    Article  Google Scholar 

  • Birdossy A, Bronsterts A, Merz B (1995) l-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach. Adv Water Resour 18(4):237–251

    Google Scholar 

  • Biswajeet P, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for land slide susceptibility mapping. Disaster Adv 3(3):26–34

    Google Scholar 

  • Boadu FK, Frederick O-N, Francis A, Samuel IKA (2013) Artificial neural network and statistical models for predicting the basic geotechnical properties of soils from electrical measurements. Near Surface Geophysics 2013(11):599–612. https://doi.org/10.3997/1873-0604.2013011

    Article  Google Scholar 

  • Bouayad D, Emeriault F (2014) Application of the hybrid ACP/ANFIS method for the prediction of surface settlement induced by an earth pressure tunnel boring machine with consideration of the encountered geology. In: Proceedings of the 8th European conference on numerical methods in geotechnical engineering, Delft, The Netherlands, pp 333–338

  • Boumezerane D, Ezerane SB, Bojan Z (2011) Fuzzy-sets decision-support system for geotechnical site soundings. Acta Geotechnica Slovenica 1:51–63

    Google Scholar 

  • Bui DT, Nhat-Duc H, Viet-Ha N (2018a) A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Eng Comput. https://doi.org/10.1007/s00366-018-0643-1

    Article  Google Scholar 

  • Bui T, Viet-Ha N, Nhat-Duc H (2018b) Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network. Adv Eng Inform 38(2018):593–604. https://doi.org/10.1016/j.aei.2018.09.005

    Article  Google Scholar 

  • Bui X-N, Mohammed AN, Hoang N (2019) Optimizing Levenberg–Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis. Eng Comput. https://doi.org/10.1007/s00366-019-00741-0

    Article  Google Scholar 

  • Cabalar AF, Abdulkadir C (2009) Modelling damping ratio and shear modulus of sand–mica mixtures using neural networks. Eng Geol 104(2009):31–40. https://doi.org/10.1016/j.enggeo.2008.08.005

    Article  Google Scholar 

  • Cabalar AF, Abdulkadir C (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(2011):10358–10367. https://doi.org/10.1016/j.eswa.2011.02.051

    Article  Google Scholar 

  • Cabalar AF, Abdulkadir C, Candan G (2012) Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering. Comput Geotech 40(2012):14–33. https://doi.org/10.1016/j.compgeo.2011.09.008

    Article  Google Scholar 

  • Caglar N, Hasan A (2007) The applicability of neural networks in the determination of soil profiles. Bull Eng Geol Environ 66:295–301. https://doi.org/10.1007/s10064-006-0075-9

    Article  Google Scholar 

  • Camarinha PIM, Trannin ICB, Simões SJC, Bernardes GP (2011) Fuzzy logic and geostatistical techniques for spatialization of soil texture in region with rough Terrains. Procedia Environ Sci 7(2011):347–352. https://doi.org/10.1016/j.proenv.2011.07.060

    Article  Google Scholar 

  • Caniani D, Stefania P, Francesco S, Aurelia S (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45:55–72. https://doi.org/10.1007/s11069-007-9169-3

    Article  Google Scholar 

  • Caniani D, Donata SL, Ignazio MM, Salvatore M (2011) Application of fuzzy logic and sensitivity analysis for soil contamination hazard classification. Waste Manag 31(2011):583–594. https://doi.org/10.1016/j.wasman.2010.09.012

    Article  Google Scholar 

  • Ceryan N, Umut O, Ayhan K (2012) Application of generalized regression neural networks in predicting the unconfined compressive strength of carbonate rocks. Rock Mech Rock Eng 45:1055–1072. https://doi.org/10.1007/s00603-012-0239-9

    Article  Google Scholar 

  • Ceryan N, Umut O, Pijush S, Sener C (2013) Modeling of tensile strength of rocks materials based on support vector machines approaches. Int J Numer Anal Methods Geomech 37:2655–2670. https://doi.org/10.1002/nag.2154

    Article  Google Scholar 

  • Chakraborty A, Diganta G (2017) Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10:385. https://doi.org/10.1007/s12517-017-3167-x

    Article  Google Scholar 

  • Chameau JL, Santamarina JC (1989) Knowledge-based system for soil improvement. J Comput Civil Eng 3(3):253–267

    Google Scholar 

  • Chandwani V, Vinay A, Ravindra N (2013) Applications of soft computing in civil engineering: a review. Int J Comput Appl 81(10):13–20

    Google Scholar 

  • Chang D-H, Shafiqul I (2000) Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sens Environ 74:534–544

    Google Scholar 

  • Chao Z, Guotao M, Ye Z, Yanjie Z, Hengyang H (2018) The application of artificial neural network in geotechnical engineering. Int Conf Civil Hydraulic Eng 1:7. https://doi.org/10.1088/1755-1315/189/2/022054

    Article  Google Scholar 

  • Chen J-W, Chang-Hua C (2005) Application of Fuzzy soil classification in visualizing 3-D soil strata. J Marine Sci Technol 13(4):265–270

    Google Scholar 

  • Chen B-RC, Feng DX-T (2007) CSV-PSO and its application in geotechnical engineering. Swarm Intell Focus Ant Particle Swarm Optim 15:263–288

    Google Scholar 

  • Chen C, Jiasheng Z (2013) Constitutive modeling of loose sands under various stress paths. Int J Geomech 13(1):1–8. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000191

    Article  Google Scholar 

  • Chen C, Zhiyu X, Genbao Z (2011) Stability assessment model for epimetamorphic rock slopes based on adaptive neuro-fuzzy inference system. EJGE 16(2011):93–107

    Google Scholar 

  • Chen W, Himan S, Ataollah S, Haoyuan H, Aykut A, Yingying T, Junzhi L, Zhu A-X, Shaojun L (2018) Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Env. https://doi.org/10.1007/s10064-018-1401-8

    Article  Google Scholar 

  • Cheng Y-M, Zong WG (2013) Hybrid Heuristic optimization methods in geotechnical engineering. Metaheuristics Water Geotech Transp Eng 2013:205–229. https://doi.org/10.1016/B978-0-12-398296-4.00009-X

    Article  Google Scholar 

  • Cheng M-Y, Hsing-Chih T, Chien-Ho K, Wen-Te C (2008) Evolutionary Fuzzy neural inference system for decision making in geotechnical engineering. J Comput Civil Eng 22:272–280. https://doi.org/10.1061/ASCE0887-3801200822:4272

    Article  Google Scholar 

  • Cheng M-Y, Minh-Tu C, Yu-WeiYu-Wei W (2014) Predicting equilibrium scour depth at bridge piers using volutionary radial basis function neural network. J Comput Civil Eng 04014070:1–10. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000380

    Article  Google Scholar 

  • Chiru-Danzer M, Juang CH, Christopher RA, Suber J (2001) Estimation of liquefaction-induced horizontal displacements using artificial neural networks. Can Geotech J 38(2001):200–207. https://doi.org/10.1139/cgj-38-1-200

    Article  Google Scholar 

  • Chitra R, Manish G (2014) Neural networks for assessing shear strength of soils. Int J Recent Dev Eng Technol 3(4):24–32

    Google Scholar 

  • Choobbasti AJ, Shooshpasha E, Farrokhzad F (2012) 3-D modeling of soil’s unsaturated depth using artificial neural network (case study of Babol). Unsaturat Soils Res Appl 2:317–324. https://doi.org/10.1007/978-3-642-31343-1

    Article  Google Scholar 

  • Choobbasti A, Obbasti J, Saman SK, Mobina TPA (2019) Modeling of compressive strength of cemented sandy soil. J Adhes Sci Technol 2019:1–18. https://doi.org/10.1080/01694243.2018.1548535

    Article  Google Scholar 

  • Chou J-S, Anh-Duc P (2015) Smart artificial firefly colony algorithm-based support vector regression for enhanced forecasting in civil engineering. Comput Aided Civil Infrastruct Eng 30(2015):715–732. https://doi.org/10.1111/mice.12121

    Article  Google Scholar 

  • Chou J-S, Julian PPT (2016) Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Autom Constr 68(2016):65–80. https://doi.org/10.1016/j.autcon.2016.03.015

    Article  Google Scholar 

  • Chou J-S, Ngoc-Tri N (2018) Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system. Neural Comput Appl 30:2129–2144. https://doi.org/10.1007/s00521-016-2739-0

    Article  Google Scholar 

  • Chou J-S, Kuo-Hsin Y, Jusieandra PP, Anh-Duc P (2015) Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures. Comput Geotech 66(2015):1–15. https://doi.org/10.1016/j.compgeo.2015.01.001

    Article  Google Scholar 

  • Chou J-S, Kuo-Hsin Y, Jie-Ying L (2016) Peak shear strength of discrete fiber-reinforced soils computed by machine learning and metaensemble methods. J Comput Civil Eng 04016036:1–17. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000595

    Article  Google Scholar 

  • Chu Y, Songyu L, Guojun C, Hanliang B (2019) Artificial neural network prediction models of heavy metal polluted soil resistivity. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2019.1585962

    Article  Google Scholar 

  • Citakoglu H (2017) Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Theor Appl Climatol 130:545–556. https://doi.org/10.1007/s00704-016-1914-7

    Article  Google Scholar 

  • Cortez P, Rui M, Antonio G (2004) Artificial intelligence applied to compaction rules and management. In: Project POCI/ECM/6lll4/2004 Interaction soil-railway track for high speed trains, Portugal

  • Cui K, Xiang J (2018) Research on prediction model of geotechnical parameters based on BP neural network. Neural Comput Appl 2018:1–11. https://doi.org/10.1007/s00521-018-3902-6

    Article  Google Scholar 

  • Cui D-M, Weizhong Y, Xiao-Quan W, Lie-Min L (2017) Towards intelligent interpretation of low strain pile integrity testing results using machine learning techniques. Sensors 17(2443):1–15. https://doi.org/10.3390/s17112443

    Article  Google Scholar 

  • Daftaribesheli A, Mohammad A, Farhang S (2011) Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system. Appl Soft Comput 11(2011):4465–4473. https://doi.org/10.1016/j.asoc.2011.08.032

    Article  Google Scholar 

  • Dağdeviren U, Kaymak B (2015) Optimum design of reinforced concrete retaining walls using artificial Bee Colony algorithm. In: ICOCEE–CAPPADOCIA2015, Nevsehir, Turkey, pp 1171–1180

  • Daniel P, Debrup B, Chiman K, Minh D, Yuzhong S, Kris K, Giovanni M, Jiang L (2017) Deep learning for effective detection of excavated soil related to illegal tunnel activities. In: 978-1-5386-1104-3/17/$31.00 ©2017 IEEE. This work was supported by the DARPA under contract D17PC00025., 1-7, DOI 978-1-5386-1104-3/17/$31.00, IEEE

  • Das SK (2008) Swelling pressure of soil: artificial intelligence technique approaches. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1880–1884

  • Das SK (2010) Prediction of lateral displacement of liquefaction induced ground using extreme learning. In: Fifth international conference on recent advances in geotechnical earthquake engineering and soil dynamics, http://scholarsmine.mst.edu/icrageesd/05icrageesd/session04/31, Scholars’ Mine

  • Das SK (2013) Artificial neural networks in geotechnical engineering: modeling and application issues. Metaheuristics Water Geotech Transp Eng 2013:231–270. https://doi.org/10.1016/B978-0-12-398296-4.00010-6

    Article  Google Scholar 

  • Das SK, Prabir KB (2006) Undrained lateral load capacity of piles in clay usingartificial neural network. Comput Geotech 33(2006):454–459. https://doi.org/10.1016/j.compgeo.2006.08.006

    Article  Google Scholar 

  • Das SK, Prabir KB (2008) Prediction of residual friction angle of clays using artificial neural network. Eng Geol 100(2008):142–145. https://doi.org/10.1016/j.enggeo.2008.03.001

    Article  Google Scholar 

  • Das SK, Pradyut KM (2011) Evaluation of liquefaction potential of soil using genetic programming. In: Indian geotechnical conference, 2011, Kochi (Paper No. N-082.), pp 827–830

  • Das SKB, Rajankanta DB (2010) Parameter estimation of soil slopes using artificial neural networks. In: Indian Geotechnical Conference–2010, GEOtrendz, IGS Mumbai Chapter and IIT Bombay, pp 829–832

  • Das SK, Shakti S (2015) Prediction of lateral load capacity of pile in clay using multivariate adaptive regression spline and functional network. Arab J Sci Eng 40:1565–1578. https://doi.org/10.1007/s13369-015-1624-y

    Article  Google Scholar 

  • Das SK, Pijush S, Akshaya KS, Sitharam TG (2010) Prediction of swelling pressure of soil using artificial intelligence techniques. Environ Earth Sci 2010(61):393–403. https://doi.org/10.1007/s12665-009-0352-6

    Article  Google Scholar 

  • Das SK, Pijush S, Shakilu ZK, Nagarathnam S (2011a) Machine learning techniques applied to prediction of residual strength of clay. Central Eur J Geosci 3(4):449–461. https://doi.org/10.2478/s13533-011-0043-1

    Article  Google Scholar 

  • Das SK, Manna B, Baidya DK (2011) Prediction of the dynamic soil-pile interaction under coupled vibration using artificial neural network approach. In: Geo-Frontiers 2011, ASCE

  • Das SK, Pijush S, Akshaya KS (2011c) Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotech Geol Eng 2011(29):329–342. https://doi.org/10.1007/s10706-010-9379-4

    Article  Google Scholar 

  • Das SK, Rajani KB, Sivakugan N, Bitanjaya D (2011d) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 2011(64):201–210. https://doi.org/10.1007/s12665-010-0839-1

    Article  Google Scholar 

  • Debnath P, Dey AK (2018) Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression. Int J Geomech 18(2):04017147. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001067

    Article  Google Scholar 

  • Dehghanbanadaki A, Mohammad AS, Iman G, Azin K, Marjan I (2019) Prediction of geotechnical properties of treated fibrous peat by artificial neural networks. Bull Eng Geol Env 78:1345–1358. https://doi.org/10.1007/s10064-017-1213-2

    Article  Google Scholar 

  • Denby B, Kizil MS (1991) An application of expert systems in geotechnical risk assessment for surface coal mine design. Int J Surf Min Reclam Environ 5(2):75–82. https://doi.org/10.1080/09208119108944289

    Article  Google Scholar 

  • Desai VGM, Veena D, Rao DH (2009) Prediction of compression index using artificial neural networks. In: IGC 2009, Guntur, INDIA, pp 614–617

  • Dhekne PY, Manoj P, Jade RK (2013) Artificial intelligence and prediction of rock fragmentation. In: 22nd mine planning and equipment selection conference, Dresden, Germany, pp 891–898, Doi: 10.1007/978-3-319-02678-7_86

  • Dindarloo SR (2015a) Peak particle velocity prediction using support vector machines: a surface blasting case study. J Southern African Inst Mini Metall 115:637–643. https://doi.org/10.17159/2411-9717/2015/v115n7a10

    Article  Google Scholar 

  • Dindarloo SR (2015b) Prediction of blast-induced ground vibrations via genetic programming. Int J Mining Sci Technol. https://doi.org/10.1016/j.ijmst.2015.09.020

    Article  Google Scholar 

  • Dindarloo SR, Elnaz S-I (2015) Estimating the unconfined compressive strength of carbonate rocks using gene expression programming. Eur J Sci Res 135(3):309–316

    Google Scholar 

  • Dine HK, Mous ED, Hebatalrahman A, Hesham KA, Khalid E (2015) Study for application of artificial neural networks in soil stabilization by nanotechnology. In: 7th International conference on Nano-technology in construction (NTC 2015), Sharm El-Shikh, Egypt, HBRC

  • Dungca JR, Joenel GG (2017) Artificial neural network permeability modeling of soil blended with fly ash. Int J GEOMATE 12(31):77–82. https://doi.org/10.21660/2017.31.6549

    Article  Google Scholar 

  • Dutta A (2016) Application of soft computing techniques for prediction of slope failure in opencast mines. Research to fulfill the degree of B. Tech & M. Tech Dual Degree in Mining Engineering, National Institute of Technology, Rourkela

  • Ebid AM (2004) Applications of genetic programming in geotechnical engineering, Ph.D. thesis, Ain Shams Uni., Cairo, Egypt

  • Yaseen LK, Een, ERYKB (2014) Neuro-Fuzzy technique for the estimation of liquefaction potential of soil. In: International journal of scientific engineering and technology research, vol 03, no 04, pp 617–623, SEMAR GROUPS

  • Elarab H, Yasir A (2007) Soil profile prediction in khartoum using artificial neural networks. In: 4th African Regional conference on soil mechanics an geotechnical

  • Elarabi H, Ali K (2008) Prediction of soil parameters using Artificial Neural Network. The Digital Soil Mapping Conference, USA, pp 395–407

  • Elarabi H, Nahed FT (2014) Developing of prediction models for soil profile and its parameters using Artificial Neural Networks. Sci Res 2(3):43–48. https://doi.org/10.11648/j.sr.20140203.13

    Article  Google Scholar 

  • Elbosraty AH, Ahmed ME, Ayman LF (2019) Predicting Nk factor of CPT test using GP: comparative study of MEPX & GN7. Int J Sci Eng Res 10(3):613–620

    Google Scholar 

  • Eleftheriadou T, Nikos A, Vasilios PA, Ioannis FG, Georgios D, Ioannis AS (2014) Ground resistance estimation using feed-forward neural networks, linear regression and feature selection models, SETN 2014, LNAI 8445, pp 418–429, Springer

  • El-Shayeb Y, Thierry V, Christophe D (1997) Fuzzy Reasoning for the analysis of risks in geotechnical engineering Application to a French Case. In: European congress on intelligent techniques and soft computing, Aachen, Germany

  • Erzin Y (2007) Artificial neural networks approach for swell pressure versus soil suction behaviour. Can Geotech J 44(2007):1215–1223. https://doi.org/10.1139/T07-052

    Article  Google Scholar 

  • Erzin Y (2008) The use of artificial neural networks for the prediction of swell pressure. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1890–1897

  • Erzin Y, Rao BH, Singh DN (2008) Artificial neural network models for predicting soil thermal resistivity. Int J Thermal Sci 47(10):1347–1358. https://doi.org/10.1016/j.ijthermalsci.2007.11.001

    Article  Google Scholar 

  • Erzin Y, Gumaste SD, Gupta AK (2009) Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Can Geotech J 46(2009):955–968. https://doi.org/10.1139/T09-035

    Article  Google Scholar 

  • Erzin Y, Rao BH, Patel A, Gumaste SD, Singh DN (2010) Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. Int J Thermal Sci 49(2010):118–130. https://doi.org/10.1016/j.ijthermalsci.2009.06.008

    Article  Google Scholar 

  • Facciorusso J, Uzielli M (2004) Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests. In: Proceedings ISC-2 on geotechnical and geophysical site characterization, pp 905–912, ISBN 90 5966 009 9, Millpres

  • Faradonbeh RS, Danial JA (2016) Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Eng Comput 2016(32):123–133. https://doi.org/10.1007/s00366-015-0404-3

    Article  Google Scholar 

  • Faradonbeh RS, Danial JA, Hassan BA, Edy TM (2016a) Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Comput Appl 29:269–281. https://doi.org/10.1007/s00521-016-2537-8

    Article  Google Scholar 

  • Faradonbeh RS, Danial JA, Hassan BA, Edy TM (2016b) Genetic programming and gene expression programming for flyrock assessment duetomineblasting. Int J Rock Mech Min Sci 88:254–264. https://doi.org/10.1016/j.ijrmms.2016.07.028

    Article  Google Scholar 

  • Faradonbeh RS, Mahdi H, Hassan BA, Danial JA, Masoud M (2018) Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environ Monit Assess 190:1–15. https://doi.org/10.1007/s10661-018-6719-y

    Article  Google Scholar 

  • Farag NO, El-Zahaby KM, Bazaraa AS (2005) Quantifying soil-raft-superstructure interaction using field testing. In: Numerical analysis and artificial neural networks, ANNs, Structures Congress 2005, ASCE

  • Farrokhzad F, Choobbasti AJ, Barari A (2008) Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Int Confer Case Histories Geotech Eng 41:1–9

    Google Scholar 

  • Farrokhzad F, Choobbasti AJ, Barari A (2010) Artificial neural network model for prediction of liquefaction potential in soil deposits. In: Fifth international conference on recent advances in geotechnical earthquake engineering and soil dynamics, http://scholarsmine.mst.edu/icrageesd/05icrageesd/session04/4, Scholars’ Mine

  • Farrokhzad F, Barari A, Choobbasti AJ, Ibsen LB (2011) Neural network-based model for landslide susceptibility and soil longitudinal profile analyses: two case studies. J Africa Earth Sc 61(2011):349–357. https://doi.org/10.1016/j.jafrearsci.2011.09.004

    Article  Google Scholar 

  • Farrokhzad F, Choobbasti AJ, Barari A (2012) Liquefaction microzonation of Babol city using artificial neural network. J King Saud Univ Sci 24:89–100. https://doi.org/10.1016/j.jksus.2010.09.003

    Article  Google Scholar 

  • Fatehnia M, Gholamreza A (2018) A review of genetic programming and artificial neural network applications in pile foundations. Fatehnia Amirinia Geo-Eng 9:1–20. https://doi.org/10.1186/s40703-017-0067-6

    Article  Google Scholar 

  • Fattah EA, Hossam EAA, Ahmed ME (2002) Prediction of soil liquefaction using genetic programming. In: III Middel East Regional conference on civil engineering technology and III international symposium on environmental hydrology

  • Fattah EA, Hossam EAA, Ahmed ME (2005) Prediction of uplift capacity for shallow foundations using genetic programming. In: Eleventh international colloquium on structural and geotechnical engineering, Ain Shams University-Cairo

  • Feng S, Aimin Y, Yanfei D (2014) Fuzzy comprehensive evaluation of open-pit slope stability. Adv Mater Res 962–965(2014):1029–1033. https://doi.org/10.4028/www.scientific.net/AMR.962-965.1029

    Article  Google Scholar 

  • Feng X, Shuchen L, Chao Y, Peng Z, Yang S (2018) Prediction of slope stability using naive bayes classifier. KSCE J Civil Eng 22(3):941–950. https://doi.org/10.1007/s12205-018-1337-3

    Article  Google Scholar 

  • Fenves SJ (1987) Role of artificial intelligence and knowledge-base expert system methods in civil engineering. In: University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, vol 15213, pp 1–24

  • Ferentinou M, Thomas H, Michael S (2012) Application of computational intelligence tools for the analysis of marine geotechnical properties in the head of Zakynthos canyon, Greece. Comput Geosci 40:166–174. https://doi.org/10.1016/j.cageo.2011.06.022

    Article  Google Scholar 

  • Fetz T, Michael O, Johannes J, David K, Gunther K, Heimo L, Rudolf FS (1999) Fuzzy models in geotechnical engineering and construction management. Comput Aided Civil Infrastruct Eng 14:93–106

    Google Scholar 

  • Flores CO, Romo MPO (2001) Dynamic behavior of tailings. Int Conf Recent Adv Geot Earthq Eng Soil Dyn 41:1–6

    Google Scholar 

  • Gandomi AH, Ali RK (2018) Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE Trans Industr Inf 14(3):1099–1106. https://doi.org/10.1109/TII.2017.2776132

    Article  Google Scholar 

  • Gandomi AH, Ali RK, Mehdi M, Mehdi J (2015) Slope stability analyzing using recent swarm intelligence techniques. Int J Numer Anal Methods Geomech 39:295–309. https://doi.org/10.1002/nag.2308

    Article  Google Scholar 

  • Gandomi M, Mohsen S, Mohammad RZ, Amir HG (2016) Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique. Geosci Front 7(2016):75–82. https://doi.org/10.1016/j.gsf.2014.10.004

    Article  Google Scholar 

  • Garg A, Ankit G, Tai K, Sreedeep S (2014a) An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Eng Appl Artif Intell 30:30–40. https://doi.org/10.1016/j.engappai.2013.12.011

    Article  Google Scholar 

  • Garg A, Akhil G, Tai K, Barontini S (2014b) A computational intelligence-based genetic programming approach for the simulation of soil water retention curves. Transp Porous Med 2014(103):497–513. https://doi.org/10.1007/s11242-014-0313-8

    Article  Google Scholar 

  • Ghaleini EN, Mohammadreza K, Mohammadreza M, Mehdi ES, Edy TM, Behrouz G (2019) A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Eng Comput 35:647–658. https://doi.org/10.1007/s00366-018-0625-3

    Article  Google Scholar 

  • Ghodrati A, Ata AA (2016) Artificial neural networks for modeling shear modulus and damping behavior of gravelly materials. Int J Geomech 04016060:1–20. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000660

    Article  Google Scholar 

  • Gholami R, Vamegh R, Andisheh A (2013) Improved RMR rock mass classification using artificial intelligence algorithms. Rock Mech Rock Eng 46:1199–1209. https://doi.org/10.1007/s00603-012-0338-7

    Article  Google Scholar 

  • Gholamnejad J, Tayarani N (2010) Application of artificial neural networks to the prediction of tunnel boring machine penetration rate. Mining Sci Technol 20(2010):0727–0733. https://doi.org/10.1016/S1674-5264(09)60271-4

    Article  Google Scholar 

  • Ghorbani A, Mostafa FN (2017) Evaluation of induced settlements of piled rafts in the coupled static-dynamic loads using neural networks and evolutionary polynomial regression. Appl Comput Intell Soft Comput 2017:1–23. https://doi.org/10.1155/2017/7487438

    Article  Google Scholar 

  • Goh ATC (1995) Predicting seismic liquefaction using neural networks. Int Confer Recent Adv Geotech Earthq Eng Soil Dyn 15:261–264

    Google Scholar 

  • Goh ATC (1996) Neural-network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73

    Google Scholar 

  • Goh ATC (1999a) Soil laboratory data interpretation using generalized regression neural network. Civil Eng Environ Syst 16(3):175–195. https://doi.org/10.1080/02630259908970261

    Article  Google Scholar 

  • Goh ATC (1999b) Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Can Geotech J 36:382–391

    Google Scholar 

  • Goh ATE (2001) Neural network applications in geotechnical engineering. Scientia Iranica 8(1):1–9

    Google Scholar 

  • Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39(2002):219–232. https://doi.org/10.1139/T01-073

    Article  Google Scholar 

  • Goh ATC, Chai GC (2013) Geotechnical applications of bayesian neural networks. Metaheuristics Water Geotech Transp Eng 2013:271–287. https://doi.org/10.1016/B978-0-12-398296-4.00011-8

    Article  Google Scholar 

  • Goh ATC, Fred HK (2003) Neural network approach to model the limit state surface for reliability analysis. Can Geotech J 40(2003):1235–1244. https://doi.org/10.1139/T03-056

    Article  Google Scholar 

  • Goh ATC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(2007):410–421. https://doi.org/10.1016/j.compgeo.2007.06.001

    Article  Google Scholar 

  • Goh ATC, Wong KS, Broms BB (1995) Estimation of lateral wall movements in braced excavations using neural networks. Can Geotech J 32:1059–1064

    Google Scholar 

  • Goh ATC, Fred HK, Chua CG (2005) Bayesian neural network analysis of undrained side resistance of drilled shafts. J Geotech Geoenviron Eng 131(1):84–93. https://doi.org/10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Goharzay M, Ali N, Ahmadreza MA, Mostafa J (2017) A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. J Rock Mech Geotech Eng 9(2017):683–693. https://doi.org/10.1016/j.jrmge.2017.03.011

    Article  Google Scholar 

  • Gohl ATC (1995) Modeling soil correlations using neural networks. J Comput Civil Eng 9(4):275–278

    Google Scholar 

  • Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng Geol 66:39–51

    Google Scholar 

  • Gokceoglu C, Kivanc Z (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17(2004):61–72. https://doi.org/10.1016/j.engappai.2003.11.006

    Article  Google Scholar 

  • Goktepe AB, Altun S, Sezer A (2005) Soil clustering by fuzzy c-means algorithm. Adv Eng Softw 36(2005):691–698. https://doi.org/10.1016/j.advengsoft.2005.01.008

    Article  Google Scholar 

  • Gomes CA, Cortez P, Tinoco J, Marques R (2013) Artificial intelligence applications in transportation geotechnics. Geotech Geol Eng 31:861–879. https://doi.org/10.1007/s10706-012-9585-3

    Article  Google Scholar 

  • Gong W, Lei W, Sara K, Juang CH, Hongwei H, Jie Z (2014) Robust geotechnical design of earth slopes using fuzzy sets. J Geot Geoenviron Eng 2014(04014084):1–9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001196

    Article  Google Scholar 

  • Gonos IF, Ioannis AS (2005) Estimation of multilayer soil parameters using genetic algorithms. IEEE Trans Power Deliv 20(1):100–106. https://doi.org/10.1109/TPWRD.2004.836833

    Article  Google Scholar 

  • Gopalakrishnan KL, Halil C (2009) Adaptive neuro-fuzzy inference system-based backcalculation approach to airport pavement structural analysis. In: Geotechnical/materials engineering conference presentations and proceedings

  • Gordan B, Danial JA, Mohsen H, Msoud M (2016) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput 32:85–97. https://doi.org/10.1007/s00366-015-0400-7

    Article  Google Scholar 

  • Gordan B, Mohammadreza K, Clementking A, Hossein T, Edy TM (2018) Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques. Eng Comput 2018:1–10. https://doi.org/10.1007/s00366-018-0642-2

    Article  Google Scholar 

  • Güllü H (2013) On the prediction of shear wave velocity at local site of strong ground motion stations: an application using artificial intelligence. Bull Earthq Eng 11:969–997. https://doi.org/10.1007/s10518-013-9425-8

    Article  Google Scholar 

  • Güllü H, Halil IF (2017) On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence. Geomech Eng 12(3):441–464. https://doi.org/10.12989/gae.2017.12.3.441

    Article  Google Scholar 

  • Gupta A, Biswas S, Arora VK (2019) Selection of most suitable stabilized/solidified dredged soil to use in highway subgrade layer construction. J Soft Comput Civil Eng 3–1:1–15. https://doi.org/10.22115/SCCE

    Article  Google Scholar 

  • Habibagahi G, Alireza B (2003) A neural network framework for mechanical behavior of unsaturated soils. Can Geotech J 40(2003):684–693. https://doi.org/10.1139/T03-004

    Article  Google Scholar 

  • Hajihassani M (2013) Tunneling-induced ground movement and building damage prediction using hybrid artificial neural networks, Ph.D. thesis, Universiti Teknologi, Malaysia

  • Hajihassani M, Armaghani DJ, Kalatehjari R (2018) Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech Geol Eng 2018(36):705–722. https://doi.org/10.1007/s10706-017-0356-z

    Article  Google Scholar 

  • Hajihassani M, Kalatehjari R, Marto A, Mohamad H, Khosrotash M (2019) 3D prediction of tunneling-induced ground movements based on a hybrid ANN and empirical methods. Eng Comput. https://doi.org/10.1007/s00366-018-00699-5

    Article  Google Scholar 

  • Hamidi JK, Kourosh S, Bahram R, Hadi B (2010) Application of Fuzzy set theory to rock engineering classification systems: an illustration of the rock mass excavability index. Rock Mech Rock Eng 43:335–350. https://doi.org/10.1007/s00603-009-0029-1

    Article  Google Scholar 

  • Hanna AM, George M, Mary H (2004) Efficiency of pile groups installed in cohesionless soil using artificial neural networks. Can Geotech J 41(2004):1241–1249. https://doi.org/10.1139/T04-050

    Article  Google Scholar 

  • Hanna AM, Derin U, Gokhan S (2007) Evaluation of liquefaction potential of soil deposits using artificial neural networks. Eng Comput 24(1):5–16. https://doi.org/10.1108/02644400710718547

    Article  Google Scholar 

  • Harandizadeh H, Toufigh MM, Toufigh V (2018) Different neural networks and modal tree method for predicting ultimate bearing capacity of piles. Int J Optim Civil Eng 8(2):311–328

    Google Scholar 

  • Hashash YMA, Jung S, Ghaboussi J (2004) Numerical implementation of a neural network based material model in finite element analysis. Int J Numer Methods Eng 59:989–1005. https://doi.org/10.1002/nme.905

    Article  Google Scholar 

  • Hashemi SM, Iraj R (2018) Numerical comparison of the performance of genetic algorithm and particle swarm optimization in excavations. Civil Eng J 4(9):2186–2196. https://doi.org/10.28991/cej-03091149

    Article  Google Scholar 

  • Heidaripanah A, Mojtaba N, Fazlollah S (2016) Prediction of resilient modulus of lime-treated subgrade soil using different kernels of support vector machine. Int J Geomech 06016020:1–6. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000723

    Article  Google Scholar 

  • Himanshu N, Burman A (2018) determination of critical failure surface of slopes using particle swarm optimization technique considering seepage and seismic loading. Geotech Geol Eng. https://doi.org/10.1007/s10706-018-0683-8

    Article  Google Scholar 

  • Hsiao ECL, Gordon TCKung, Juang CH, Matt S (2006) Estimation of wall deflection in braced excavation in clays using artificial neural networks. GeoCongress, ASCE

  • Huang ZH, Zhang LL, Cheng SY, Zhang J, Xia XH (2014) Back-analysis and parameter identification for deep excavation based on pareto multiobjective optimization. J Aerospace Eng A4014007:1–11. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000464

    Article  Google Scholar 

  • Hussain MS, Ahangar-asr A, Chen Y, Javadi AA (2015) A new evolutionary approach to geotechnical and geo-environmental modelling. Handbook Genetic Programm Appl 19:483–499. https://doi.org/10.1007/978-3-319-20883-1_19

    Article  Google Scholar 

  • Hussain S, Noor M, Mujahid K, Zahid UR, Mohammad T (2016) Comparative analysis of rock mass rating prediction using different inductive modeling techniques. Int J Mining Eng Miner Process 5(1):9–15. https://doi.org/10.5923/j.mining.20160501.02

    Article  Google Scholar 

  • Hussain A, Surendar A, Clementking A, Sujith K, Lubov KI (2018) Rock brittleness prediction through two optimization algorithms namely particle swarm optimization and imperialism competitive algorithm. Eng Comput. https://doi.org/10.1007/s00366-018-0648-9

    Article  Google Scholar 

  • Imran SA, Manik B, Sesh C, Musharraf Z, Moeen N (2018) Artificial neural network–based intelligent compaction analyzer for real-time estimation of subgrade quality. Int J Geomech 18(6):04018048. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001089

    Article  Google Scholar 

  • Isik F, Gurkan O (2013) Estimating compaction parameters of fine- and coarse-grained soils by means of artificial neural networks. Environ Earth Sci 69:2287–2297. https://doi.org/10.1007/s12665-012-2057-5

    Article  Google Scholar 

  • Ismail A, Jeng D-S (2011) Modelling load–settlement behaviour of piles using high-orderneural network (HON-PILEmodel). Eng Appl Artif Intell 24(2011):813–821. https://doi.org/10.1016/j.engappai.2011.02.008

    Article  Google Scholar 

  • Jaksa MB, Maier HR, Shahin MA (2008) Future challenges for artificial neural network modelling in geotechnical engineering. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1710–1719

  • Jan JC, Shih-Lin H, Chi SY, Chern JC (2002) Neural network forecast model in deep excavation. J Comput Civil Eng 2002(16):59–65. https://doi.org/10.1061/ASCE0887-3801200216:159

    Article  Google Scholar 

  • Jana RB, Binayak PM, Everett P (2008) Multiscale Bayesian neural networks for soil water content estimation. Water Resour Res 44:1–16. https://doi.org/10.1029/2008WR006879

    Article  Google Scholar 

  • Javadi AA, Rezania M (2009) Applications of artificial intelligence and data mining techniques in soil modeling. Geomech Eng 1(1):53–74

    Google Scholar 

  • Javadi AA, Moura M, Asaad F, Alireza A-A (2009) An artificial intelligence based finite element method. ISAST Trans Comput Intell Syst 1(2):1–7

    Google Scholar 

  • Javadi AA, Faramarzi A, Ahangar-Asr A, Mehravar M (2010) Finite element analysis of three dimensional shallow foundation using artificial intelligence based constitutive model. In: Proceedings of the international conference on computing in civil and building engineering, Nottingham University Press

  • Javadi AA, Ahangar-Asr A, Johari A, Faramarzi A, Toll D (2012) Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng Appl Artif Intell 25(2012):926–933. https://doi.org/10.1016/j.engappai.2012.03.006

    Article  Google Scholar 

  • Javadi AA, Lireza A-A, Asaad F, Nasim M (2013) An EPR approach to the modeling of civil and geotechnical engineering systems. Metaheuristics Water Geotech Transp Eng 2013:311–326. https://doi.org/10.1016/B978-0-12-398296-4.00013-1

    Article  Google Scholar 

  • Javdanian H, Biswajeet P (2019) Assessment of earthquake-induced slope deformation of earth dams using soft computing techniques. Landslides 16:91–103. https://doi.org/10.1007/s10346-018-1078-x

    Article  Google Scholar 

  • Jebur AA, William A, Rafid MA (2018) Feasibility of an evolutionary artificial intelligence (AI) scheme for modelling of load settlement response of concrete piles embedded in cohesionless soil. Ships Offshore Struct 2018:1–15. https://doi.org/10.1080/17445302.2018.1447746

    Article  Google Scholar 

  • Jellali B, Wissem F (2017) Constrained particle swarm optimization algorithm applied to slope stability. Int J Geomech 17(12):06017022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001019

    Article  Google Scholar 

  • Jeng D-S, Cha DH, Blumenstein M (2003) Application of neural network in civil engineering problems. In: International conferences on advances in the internet, processing, systems and interdisciplinary research, Belgrade, Yugoslavia, Griffith University

  • Jeon JK, Rahman MS (2008) Fuzzy neural network models for geotechnical problems, Final report, RESEARCH PROJECT FHWA/NC/2006-52, North Carolina State University

  • Jianbin Z, Tu J, Shi Y (2010) An ANN model for predicting level ultimate bearing capacity of PHC pipe pile. In: Earth and space 2010: engineering, science, construction, and operations in challenging environments, pp 3168–3176, ASCE

  • Joerg M, Winfried S, Lisa B, Alessandro C, Tom S (2008) Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling. J Artif Evol Appl. https://doi.org/10.1155/2008/574613

    Article  Google Scholar 

  • Juang CH, Lee DH, Sheu DH (1992) Mapping slope failure potential using fuzzy sets. J Geotech Eng 118(3):475–494

    Google Scholar 

  • Juang CH, Chen CJ, Tien Y-M (1999) Appraising cone penetration test based liquefaction resistance evaluation methods: artificial neural network approach. Can Geotech J 36:443–454

    Google Scholar 

  • Juang CH, Caroline JC, Tao J, Ronald DA (2000) Risk-based liquefaction potential evaluation using standard penetration tests. Can Geotech J 37:195–1208

    Google Scholar 

  • Juang CH, Ronald DA, Tao J, Caroline JC (2001) Probability-based liquefaction evaluation using shear wave velocity measurements. In: International conferences on recent advances in geotechnical earthquake engineering and soil dynamics, Vol 20, pp 1–6

  • Juang CH, Haiming Y, Der-Her L, Ping-Sien L (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129(1):66–80. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66)

    Article  Google Scholar 

  • Juwaied NS (2018) Applications of artificial intelligence in geotechnical engineering. ARPN J Eng Appl Sci 13(8):2764–2785

    Google Scholar 

  • Kalatehjari R, Ahmad SAR, Nazri A, Mohsen H (2014) The contribution of particle swarm optimization to three-dimensional slope stability analysis. Sci World J. https://doi.org/10.1155/2014/973093

    Article  Google Scholar 

  • Kang F, Junjie L (2015) Artificial Bee Colony algorithm optimized support vector regression for system reliability analysis of slopes. J Comput Civil Eng 04015040:1–13. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000514

    Article  Google Scholar 

  • Kang F, Junjie L, Zhenyue M (2013) An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Eng Optim 45(2):207–223. https://doi.org/10.1080/0305215X.2012.665451

    Article  Google Scholar 

  • Kang F, Jing-Shuang L, Yuan W, Junjie L (2016) Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes. Eur J Environ Civil Eng 2016:1–22. https://doi.org/10.1080/19648189.2016.1169225

    Article  Google Scholar 

  • Kanungo DP, Shaifaly S, Anindya P (2014) Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters. Front Earth Sci 8(3):439–456. https://doi.org/10.1007/s11707-014-0416-0

    Article  Google Scholar 

  • Kashani AR, Amir HG, Mehdi M (2016) Imperialistic competitive algorithm: a metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes. Geosci Front 7(2016):83–89. https://doi.org/10.1016/j.gsf.2014.11.005

    Article  Google Scholar 

  • Kaunda R (2014) New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength. J Rock Mech Geotech Eng 6(2014):338–347. https://doi.org/10.1016/j.jrmge.2014.04.008

    Article  Google Scholar 

  • Kaya Z (2015) Predicting liquefaction-induced lateral spreading by using neural network and neuro-Fuzzy techniques. Int J Geomech 04015095:1–14. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000607

    Article  Google Scholar 

  • Kaya T, Kenan G, Ali EB (2012) Landslide stability analysis based on artificial neural networks. In: Istanbul International Geophysical Conference and Oil and Gas Exhibition, Istanbul,Turkey. http://library.seg.org/

  • Kayadelen C (2008) Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int J Numer Anal Meth Geomech 32:1087–1106. https://doi.org/10.1002/nag.660

    Article  Google Scholar 

  • Khajehzadeh M, Mohd RT, El-S A, Mabdiyeh E (2010) Economic design of retaining wall using particle Swarm optimization with passive congregation. Austr J Basic Appl Sci 4(11):5500–5507

    Google Scholar 

  • Khajehzadeh M, Mohd RT, Ahmed E-S, Mahdiyeh E (2011) Modified particle swarm optimization for optimum design of spread footing and retaining wall. J Zhejiang Univ-Sci A 12(6):415–427. https://doi.org/10.1631/jzus.A1000252

    Article  Google Scholar 

  • Khamesi H, Seyed RT, Hossein M-N, Zakarya G (2014) Improving the performance of intelligent back analysis for tunneling using optimized fuzzy systems: case study of the karaj subway line 2 in Iran. J Comput Civil Eng 05014010:1–12. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000421

    Article  Google Scholar 

  • Khan N, Vijaya RB, Reddy AM, Kumar MTP (2015) A state-of-the-art review on stability analysis of slopes using fuzzy logic approach. Int J Emerg Technol Adv Eng 5(4):148–151

    Google Scholar 

  • Khan SZ, Shakti S, Pavani M, Das SK (2016) Prediction of the residual strength of clay using functional networks. Geosci Front 7(2016):67–74. https://doi.org/10.1016/j.gsf.2014.12.008

    Article  Google Scholar 

  • Khan M, Mohammad T, Hazi MA, Azamathulla I, Noor M (2017) Genetic functions-based modelling for pier scour depth prediction in coarse bed streams. Proc Inst Civil Eng. https://doi.org/10.1680/jwama.15.00075

    Article  Google Scholar 

  • Khandelwal M (2011) Prediction of thermal conductivity of rocks by soft computing. Int J Earth Sci 100:1383–1389. https://doi.org/10.1007/s00531-010-0550-1

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2009) Prediction of blast-induced ground vibration using artificial neural network. Int J Rock Mech Min Sci 46(2009):1214–1222. https://doi.org/10.1016/j.ijrmms.2009.03.004

    Article  Google Scholar 

  • Khandelwal M, Kumar DL, Mohan Y (2011) Application of soft computing to predict blast-induced ground vibration. Eng Comput 27:117–125. https://doi.org/10.1007/s00366-009-0157-y

    Article  Google Scholar 

  • Khandelwal M, Aminaton M, Seyed AF, Mahyar G, Danial JA, Singh TN, Omid T (2018) Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Eng Comput 2018(34):307–317. https://doi.org/10.1007/s00366-017-0541-y

    Article  Google Scholar 

  • Khudier AS (2018) Prediction of bearing capacity for soils in Basrah City using artificial neural network (ANN) and multilinear regression (MLR) Models. Int J Civil Eng Technol 9(4):853–864

    Google Scholar 

  • Khuntia S (2014) Modelling of geotechnical problems using soft computing, M.Sc. thesis, National Institute of Technology, Rourkela

  • Kiefa MAA (1998) General regression neural networks for driven piles in cohesionless soils. J Geouch Geoenviron Eng 124(12):1177–1185

    Google Scholar 

  • Kisi O, Mustafa T, Mohammad ZK (2015) Modeling soil temperatures at different depths by using three different neural computing techniques. Theor Appl Climatol 121:377–387. https://doi.org/10.1007/s00704-014-1232-x

    Article  Google Scholar 

  • Koelewijn AR, André AMJ (2008) Geobrain: Dutch feasibility database for installing sheet pile walls. In: Sixth international conference on case histories in geotechnical engineering, http://scholarsmine.mst.edu/icchge/6icchge/session11b/5, Scholars’ Mine

  • Kohestani VR, Hassanlourad M (2015) Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines. Int J Geomech 16(1):04015038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000509

    Article  Google Scholar 

  • Kohestani VR, Hassanlourad M, Ardakani A (2015) Evaluation of liquefaction potential based on CPT data using random forest. Nat Hazards 79:1079–1089. https://doi.org/10.1007/s11069-015-1893-5

    Article  Google Scholar 

  • Kolay PK, Rosmina AB, Ling NW (2008) Settlement Prediction of Tropical Soft Soil by Artificial Neural Network (ANN). In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1843–1849

  • Kolay PK, Rosmina AB, Shirley Y (2011) Prediction of compression index for tropical soil by using Artificial Neural Network (ANN). In: 13th international conference of the IACMAG 2011–Melbourne, Australia, pp 542–547

  • Koopialipoor M, Ahmad F, Ebrahim NG, Mohammadreza M, Danial JA (2019a) Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Eng Comput 2019:1–13. https://doi.org/10.1007/s00366-019-00701-8

    Article  Google Scholar 

  • Koopialipoor M, Bhatawdekar RM, Ahmadreza H, Danial JA, Behrouz G, Edy TM (2019b) The use of new intelligent techniques in designing retaining walls. Eng Comput. https://doi.org/10.1007/s00366-018-00700-1

    Article  Google Scholar 

  • Kordjazi A, Nejad FP, Jaksa MB (2014) Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55(2014):91–102. https://doi.org/10.1016/j.compgeo.2013.08.001

    Article  Google Scholar 

  • Kordjazi A, Nejad FP, Jaksa MB (2015) The evaluation of ultimate axial-loading capacity of piles using artificial intelligence methods. Geotech Eng Infrastruct Dev. https://doi.org/10.1680/ecsmge.60678

    Article  Google Scholar 

  • Kordnaeij A, Farzin K, Behrouz K, Hossein M-A (2015) Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties. Soils Found 55(6):1335–1345. https://doi.org/10.1016/j.sandf.2015.10.001

    Article  Google Scholar 

  • Kostic S, Nebojša V, Kristina T, Andreja S (2016) Application of artificial neural networks for slope stability analysis in geotechnical practice. In: 13th symposium on neural networks and applications (NEUREL), SAVA Center, Belgrade, Serbia, 1-6, 978-1-5090-1530-6/16, IEEE

  • Kumar MP, Sarat KD (2015) Model uncertainty o fSPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Soils Found 55(2):258–275. https://doi.org/10.1016/j.sandf.2015.02.003

    Article  Google Scholar 

  • Kumar V, Kumar V, Yeetendra K (2012) Liquefaction potential evaluation of alluvial soil by neuro-Fuzzy technique. Int J Emerg Technol Adv Eng 2(3):174–184

    Google Scholar 

  • Kumar P, Muduli, Sarat KD (2015) Evaluation of liquefaction potential of soil based on shearwave velocity using multi-gene genetic programming. Handbook Genetic Programm Appl 12:309–343. https://doi.org/10.1007/978-3-319-20883-1_12

    Article  Google Scholar 

  • Kurek J, Michał K, Piotr B, Oguz A, Simon R, Grzegorz W (2015) The application of ensemble classification techniques in soil classification system on the basis of dmt and cpt data. In: 3rd international conference on artificial intelligence and computer science (AICS2015), Penang, MALAYSIA, 38-45, e-ISBN 978-967-0792-06-4

  • Kurup PU, Dudani NK (2001) CPT evaluation of liquefaction potential using neural networks. Int Confer Recent Adv Geotech Earthq Eng Soil Dyn 28:1–6

    Google Scholar 

  • Kurup PU, Erin PG (2006) Prediction of soil composition from CPT data using general regression neural network. J Comput Civil Eng 20:281–289. https://doi.org/10.1061/ASCE0887-3801200620:4281

    Article  Google Scholar 

  • Kurup PU, Nitin KD (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotechn Geoenviron Eng 128(7):569–579. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(569)

    Article  Google Scholar 

  • Lai J, Junling Q, Zhihua F, Jianxun C, Haobo F (2016) Prediction of soil deformation in tunnelling using artificial neural networks. Comput Intell Neurosci. https://doi.org/10.1155/2016/6708183

    Article  Google Scholar 

  • Lee C-Y, Shuh-Gi C (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324. https://doi.org/10.6119/JMST-012-0518-3

    Article  Google Scholar 

  • Lee T-L, Hung-ming L, Yuh-pin L (2009) Assessment of highway slope failure using neural networks. J Zhejiang Univ Sci A 10(1):101–108

    Google Scholar 

  • Lee Y-F, Yun-Yao C, Juang CH, Der-Her L (2012) Reliability analysis of rock wedge stability: knowledge-based clustered partitioning approach. J Geotech Geoenviron Eng 2012(138):700–708. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000618

    Article  Google Scholar 

  • Leu S-S, Hsien-Chuang L (2004) Neural-network-based regression model of ground surface settlement induced by deep excavation. Autom Constr 13(2004):279–289. https://doi.org/10.1016/S0926-5805(03)00018-9

    Article  Google Scholar 

  • Levasseur S, Malecot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Meth Geomech 2008(32):189–213. https://doi.org/10.1002/nag.614

    Article  Google Scholar 

  • Li SL, Yingxi L (2004) Intelligent forecast procedures for slope stability with evolutionary artificial neural network. In: International symposium on neural networks Dalian, China, pp 792–798, Springer

  • Li Z, Donna R, Nancy H, Lori S (2006) Using geostatistics and artificial neural networks to determine the location of a contaminant source. In: GeoCongress 2006, ASCE

  • Li L, Hi-bao L, Xue-song C, Guang-ming Y (2009) A combinatorial search method based on harmony search algorithm and particle swarm optimization in slope stability analysis. In: IEEE 2009 international conference on computational intelligence and software engineering-Wuhan, China, pp 978-1-4244-4507-3/09, IEEE

  • Li Y-C, Yun-Min C, Tony LYZ, Dao-Sheng L, Peter JC (2010) An efficient approach for locating the critical slip surface in slope stability analyses using a realcoded genetic algorithm. Can Geotech J 47(2010):806–820. https://doi.org/10.1139/T09-124

    Article  Google Scholar 

  • Li H, Junjie L, Fei K (2011a) Risk analysis of dam based on artificial bee colony algorithm with fuzzy c-means clustering. Can J Civil Eng 38(2011):483–492. https://doi.org/10.1139/L11-020

    Article  Google Scholar 

  • Li R, Xianfeng S, Zheng D, Ming P (2011) Using Fuzzy approach to build a continuous relationship between SCS curve number and soil properties. In: 9th international conference on geoinformatics, 24–26 June 2011, Shanghai, China, https://doi.org/10.1109/geoinformatics.2011.5980785, IEEE

  • Li H, Hong Z, Zuwen Y, Xuedong Z (2012) Particle Swarm optimization algorithm coupled with finite element limit equilibrium method for geotechnical practices. Math Problems Eng. https://doi.org/10.1155/2012/498690

    Article  Google Scholar 

  • Li AI, Khoo SY, Wang Y, Lyamin AY (2014) Application of neural network to rock slope stability assessments. In: Proceedings of the 8th European conference on numerical methods in geotechnical engineering, Delft, The Netherlands, pp 473–478, Taylor & Francis Group

  • Li G, Zhiqiang Y, Qian G, Shuhua Z (2014b) Rock mass constitutive model identification based on artificial intelligence technology. EJGE 19:875–886

    Google Scholar 

  • Liang M, Edy TM, Roohollah SF, Saber G, Liang M (2016) Rock strength assessment based on regression tree technique. Eng Comput 32:343–354. https://doi.org/10.1007/s00366-015-0429-7

    Article  Google Scholar 

  • Lin P, Xiaoli L, Hong-Xin C, Jinxie K (2014) Ant Colony optimization analysis on overall stability of high arch dam basis of field monitoring. Sci World J 483243:1–15. https://doi.org/10.1155/2014/483243

    Article  Google Scholar 

  • Liu J, Guangyue W, Ying C (2008) Research and application of GA neural network model on dam displacement forecasting. In: 11th ASCE aerospace division international conference (Earth and Space 2008) Long Beach, CA, USA, ASCE

  • Liu Z, Jianfu S, Weiya X, Fei X (2013) Comprehensive stability evaluation of rock slope using the cloud model-based approach. Rock Mech Rock Eng 2013:46. https://doi.org/10.1007/s00603-013-0507-3

    Article  Google Scholar 

  • Liu Z, Jianfu S, Weiya X, Chen H, Shi C (2014a) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides 11:889–896. https://doi.org/10.1007/s10346-013-0443-z

    Article  Google Scholar 

  • Liu Z, Jianfu S, Weiya X, Hongjie C, Yu Z (2014b) An extreme learning machine approach for slope stability evaluation and prediction. Nat Hazards 73:787–804. https://doi.org/10.1007/s11069-014-1106-7

    Article  Google Scholar 

  • Long-Yun Z, Zhang Q-Y, Yang S-Y, Chen X-G (2013) Fuzzy optimization method and its application of similar material ratio in 3D geo-mechanical model. J Theor Appl Inf Technol 49(1):331–341

    Google Scholar 

  • Lu P, Rosenbaum MS (2003) Artificial neural networks and grey systems for the prediction of slope stability. Nat Hazards 30(2003):383–398

    Google Scholar 

  • Luo Z, Sez A, Juang CH, Hongwei H, Ping-Sien L (2011) Probability of serviceability failure in a braced excavation in a spatially random field: Fuzzy finite element approach. Comput Geotech 38(2011):1031–1040. https://doi.org/10.1016/j.compgeo.2011.07.009

    Article  Google Scholar 

  • Mahdevari S, Seyed RT (2012) Prediction of tunnel convergence using Artificial Neural Networks. Tunnel Undergr Space Technol 28(2012):218–228. https://doi.org/10.1016/j.tust.2011.11.002

    Article  Google Scholar 

  • Mahdevari S, Seyed RT, Masoud M (2012) Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon. Int J Rock Mech Min Sci 55(2012):33–44. https://doi.org/10.1016/j.ijrmms.2012.06.005

    Article  Google Scholar 

  • Mahdiyar A, Danial JA, Aminaton M, Mehrbakhsh N, Syuhaida I (2018) Rock tensile strength prediction using empirical and soft computing approaches. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1405-4

    Article  Google Scholar 

  • Mahmoud AMH, Ahmed MS (2017) Side resistance assessment of drilled shafts socketed into rocks: empirical versus artificial intelligence approaches. In: 1st GeoMEast international congress and exhibition, Egypt, pp 288-302, 10.1007/978-3-319-61642-1_22

  • Maizir H, Khairul AK (2013) Neural network application in prediction of axial bearing capacity of driven piles. In: International multiconference of engineers and computer scientists, Vol I, pp 1–5, ISBN: 978-988-19251-8-3

  • Maizir H, Suryanita R (2018) Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network. In: The 4th International seminar on sustainable urban development, pp 1-6, 10.1088/1755-1315/106/1/012037

  • Maizir H, Nurly G, Khairul AK (2015) Artificial neural network model for prediction of bearing capacity of driven pile. Jurnal Teknik Sipil 22(1):49–56

    Google Scholar 

  • Maizir H, Reni S, Hendra J (2016) Estimation of pile bearing capacity of single driven pile in sandy soil using finite element and artificial neural network methods. In: International conference on engineering and technology, computer, basic and applied sciences ECBA, 2016, Osaka, Japan, ISBN 978-969-670-466-9

  • Maji VB, Sitharam TG (2008) Prediction of elastic modulus of jointed rock mass using artificial neural networks. Geotech Geol Eng 2008(26):443–452. https://doi.org/10.1007/s10706-008-9180-9

    Article  Google Scholar 

  • Markou IN, Dimitrios NC, Papadopoulos BK (2015) Penetrability of microfine cement grouts: experimental investigation and fuzzy regression modeling. Can Geotech J 52(2015):868–882. https://doi.org/10.1139/cgj-2013-0297

    Article  Google Scholar 

  • Martin JC, Toll DG (2006) The development of a knowledge-based system for the preliminary investigation of contaminated land. Comput Geotech 33(2006):93–107. https://doi.org/10.1016/j.compgeo.2006.03.002

    Article  Google Scholar 

  • Martins FF, Randa TFS (2013) Prediction of hard rock TBM penetration rate based on Data Mining techniques. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris 2013, pp 1751–1754

  • Martins FF, Tiago FSM (2012) Estimation of the rock deformation modulus and RMR based on data mining techniques. Geotech Geol Eng 30:787–801. https://doi.org/10.1007/s10706-012-9498-1

    Article  Google Scholar 

  • Martins FF, Arlindo B, Braga MAS (2012) Prediction of the mechanical behavior of the Oporto granite using Data Mining techniques. Expert Syst Appl 39(2012):8778–8783. https://doi.org/10.1016/j.eswa.2012.02.003

    Article  Google Scholar 

  • Marwan A, Meng-Meng Z, Abdelrehim MZ, Günther M (2016) Optimization of artificial ground freezing in tunneling in the presence of seepage flow. Comput Geotech 75(2016):112–125. https://doi.org/10.1016/j.compgeo.2016.01.004

    Article  Google Scholar 

  • Matmatte L, Jean LF, Reda MB (1997) GDQ-Expert: an expert system for assessing geotechnical data quality application to the menard pressuremeter test. Geosci Water Resour Environ Data Model 2374:244. https://doi.org/10.1007/978-3-642-60627-4

    Article  Google Scholar 

  • Mayoraz LF, Vulliet DL (2002) Neural networks for slope movement prediction. Int J Geomech 2(2):153–173. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(153)

    Article  Google Scholar 

  • Mazaheri SA, Koppi AJ, McBratney AB (1995) A fuzzy allocation scheme for the Australian Great Soil Groups Classification system. In: Eurcipeun Journul of Soil Science, December 1995, Vol 46, pp 601–612, Blackwell Publishers

  • Meij R van der (2008) Predicting horizontal deformations depending on the construction scheme using artificial intelligence. In: Second international workshop on geotechnics of soft soils, Glasgow, Scotland, pp 181–187, ISBN: 978-0-203-88333-4, Taylor & Francis Group

  • Meij R van der (2008) Predicting Horizontal Deformations under an Embankment using an artificial Neural Network. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1787–1794

  • Meij R van der (2008) Quickly and accurately predicting horizontal deformations under an embankment using an Artificial Neural Network. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(2008):379–400. https://doi.org/10.1016/j.geomorph.2006.10.035

    Article  Google Scholar 

  • Meng L, Zhang S (2013) A new Ant Colony algorithm for finite element analysis. Appl Mech Mater 299(2013):121–124. https://doi.org/10.4028/www.scientific.net/AMM.299.121

    Article  Google Scholar 

  • Mens AMJ, van Tol AF, Koelewijn AR (2008) Optimizing foundation engineering, validating models against experience using artificial intelligence. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 3384–3391

  • Meyer S (1992) Preliminary foundation design using EDESYN. Optim Artif Intell Civil Struct Eng 2:333–354

    Google Scholar 

  • Mikaeil R, Sina SH, Seyed HH (2018) Rock penetrability classification using artificial Bee Colony (ABC) algorithm and self-organizing map. Geotech Geol Eng 36:1309–1318. https://doi.org/10.1007/s10706-017-0394-6

    Article  Google Scholar 

  • Milad F, Tawfiq K, Hataf N, Ozguven EE (2015) New method for predicting the ultimate bearing capacity of driven piles by using flap number. KSCE J Civil Eng 19(3):611–620. https://doi.org/10.1007/s12205-013-0315-z

    Article  Google Scholar 

  • Miranda T (2007) Geomechanical parameters evaluation in underground structures. Artificial Intelligence, Bayesian Probabilities and Inverse Methods, Ph.D. thesis, University of Minho, Portugal

  • Miranda T, Luís RS (2012) Application of data mining techniques for the development of new geomechanical characterization models for rock masses. In: Sousa V, Fernandes A (eds) Innovative numerical modeling in 832 geomechanics, CRC Press, London, pp 245-264

  • Miranda T, Gomes C, Ribeiroe ASL (2004) Use of AI techniques and updating in geomechanical characterisation. In: Course on geomechanical parameter evaluation in rock engineering practice, research project POCI/ECM/57495/2004, entitled Geotechnical Risk in Tunnels for High Speed Trains

  • Miranda T, António GC, Luís RS (2008) Development of new models for geomechanical characterisation using data mining techniques. In: Geomechanik und Tunnelbau 1, Heft, vol 5, pp 328–334, 10.1002/geot.200800032

  • Miranda T, Lino C, António GC, Luís RS (2009) Back analysis of geomechanical parameters using classical and artificial intelligence techniques. In: Congreso de Métodos Numéricos en Ingeniería 2009, Barcelona, SEMNI

  • Miranda T, Dias D, Eclaircy-Caudron S, Gomes Correia A, Costa L (2011a) Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure. Tunnel Undergr Space Technol 26(2011):659–673. https://doi.org/10.1016/j.tust.2011.05.010

    Article  Google Scholar 

  • Miranda T, António GC, Manuel S, Luís RS, Paulo C (2011b) New models for strength and deformability parameter calculation in rock masses using data-mining techniques. Int J Geomech 11:44–58. https://doi.org/10.1061/ASCEGM.1943-5622.0000071

    Article  Google Scholar 

  • Miranda T, Sousa LR, Ruggenthen W, Sousa RL (2013) Application of data mining techniques for the development of new rock mechanics constitutive models. Const Model Geomater Adv New Appl. https://doi.org/10.1007/978-3-642-32814-5

    Article  Google Scholar 

  • Miranda T, Sousa LR, Gomes AT, Tinoco J, Ferreira C (2018) Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques. J Rock Mech Geotech Eng 10:138–150. https://doi.org/10.1016/j.jrmge.2017.11.003

    Article  Google Scholar 

  • Mishra AK, Kumar B, Dutta J (2016) DRC-12-23-S4Prediction of hydraulic conductivity of soil bentonite mixture using hybrid-ANN approach. J Environ Inf 27(2):98–105. https://doi.org/10.3808/jei.201500292

    Article  Google Scholar 

  • Moayedi H, Abbas R (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31:327–336. https://doi.org/10.1007/s00521-017-2990-z

    Article  Google Scholar 

  • Moayedi H, Danial JA (2018) Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng Comput 34:347–356. https://doi.org/10.1007/s00366-017-0545-7

    Article  Google Scholar 

  • Moayedi H, Sajad H (2017) Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput Appl 2017:1–17. https://doi.org/10.1007/s00521-018-3555-5

    Article  Google Scholar 

  • Moayedi H, Sajad H (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech 18(6):1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125

    Article  Google Scholar 

  • Moayedi H, Mansour M, Ahmad SAR, Wan AWJ, Mohammed AM (2019a) A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl 2019:1–24. https://doi.org/10.1007/s00521-019-04109-9

    Article  Google Scholar 

  • Moayedi H, Mehdi R, Abolhasan S, Wan AWJ, Ahmad SAR (2019b) Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng Comput 2019:1–12. https://doi.org/10.1007/s00366-018-00694-w

    Article  Google Scholar 

  • Mobarra Y, Alireza H, Mohammadali R (2013) Application of artificial neural networks to the prediction of TBM penetration rate in TBM-driven golab water transfer tunnel. In: International conference on civil engineering architecture and urban sustainable development 2013, Tabriz, Iran

  • Mohamad ET, Armaghani DJ, Momeni E, Yazdavar AH, Ebrahimi M (2018) Rock strength estimation: a PSO-based BP approach. Neural Comput Appl 2018(30):1635–1646. https://doi.org/10.1007/s00521-016-2728-3

    Article  Google Scholar 

  • Mohamadnejad M, Gholami R, Ataei M (2012) Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations. Tunnel Undergr Space Technol 28(2012):238–244. https://doi.org/10.1016/j.tust.2011.12.001

    Article  Google Scholar 

  • Mohammadzadeh SD, Jafar BB, Amir AH (2014) An evolutionary computational approach for formulation of compression index of fine-grained soils. Eng Appl Artif Intell 33(2014):58–68. https://doi.org/10.1016/j.engappai.2014.03.012

    Article  Google Scholar 

  • Mohammadzadeh SD, Jafar BB, Yazd SHVJ, Amir HA (2016) Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming. Environ Earth Sci 75:1–11. https://doi.org/10.1007/s12665-015-4889-2

    Article  Google Scholar 

  • Mohammadzadeh D, Seyed-Farzan K, Amir M (2019) Evolutionary prediction model for fine-grained soils compression index using gene-expression programming. https://doi.org/10.20944/preprints201903.0049.v1, QUTePrints

  • Mohanty R, Sarat KD (2018) Settlement of shallow foundations on cohesionless soils based on SPT value using multi-objective feature selection. Geotech Geol Eng 36:3499–3509. https://doi.org/10.1007/s10706-018-0549-0

    Article  Google Scholar 

  • Mokhtar M, Mahmoud B (2018) Comparison of LLNF, ANN, and COA-ANN techniques in modeling the uniaxial compressive strength and static Young s modulus of limestone of the Dalan formation. Nat Resour Res 28(1):223–239. https://doi.org/10.1007/s11053-018-9383-6

    Article  Google Scholar 

  • Mollahasani A, Amir HA, Amir HG, Azadeh R (2011) Nonlinear neural-based modeling of soil cohesion intercept. KSCE J Civil Eng 15(5):831–840. https://doi.org/10.1007/s12205-011-1154-4

    Article  Google Scholar 

  • Momeni E, Nazir R, Armaghani DJ, Maizir H (2014a) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57(2014):122–131. https://doi.org/10.1016/j.measurement.2014.08.007

    Article  Google Scholar 

  • Momeni E, Danial JA, Mohsen H, Mohd FMA (2014b) Prediction of uniaxial compressive strength of rock samples using hybrid particle Swarm optimization-based artificial neural networks. Measurement. https://doi.org/10.1016/j.measurement.2014.09.075

    Article  Google Scholar 

  • Momeni E, Ramli N, Danial JA, Harnedi M (2015a) Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Eart Sci Res J 19(1):85–93. https://doi.org/10.15446/esrj.v19n1.38712

    Article  Google Scholar 

  • Momeni E, Ramli N, Danial JA, Mohd FMA, Edy TM (2015b) Prediction of unconfined compressive strength of rocks: a review paper. Jurnal Teknologi Sci Eng 77(11):43–50

    Google Scholar 

  • Momeni E, Danial JA, Seyed AF, Ramli N (2017) Prediction of bearing capacity of thin-walled foundation:a simulation approach. Eng Comput. https://doi.org/10.1007/s00366-017-0542-x

    Article  Google Scholar 

  • Moosazadeh S, Namazi E, Aghababaei H, Marto A, Mohamad H, Hajihassani M (2017) Prediction of building damage induced by tunnelling through an optimized artificial neural network. Eng Comput. https://doi.org/10.1007/s00366-018-0615-5

    Article  Google Scholar 

  • Moreshwar ZP (2012) Applications of artificial neural networks in civil engineering. Seminar Report, Civil Engineering Department, Sinhgad Academy of Engineering, Pune

  • Mosallanezhad M, Hossein M (2017) Developing hybrid artificial neural network model for predicting uplift resistance of screw piles. Arab J Geosci 10(479):1–10. https://doi.org/10.1007/s12517-017-3285-5

    Article  Google Scholar 

  • Motamedi S, Shahaboddin S, Dalibor P, Roslan H (2015) Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PVA-Sand-Cement mixture. Powder Technol. https://doi.org/10.1016/j.powtec.2015.02.045

    Article  Google Scholar 

  • Muduli PK, Arat KD (2014) First-order reliability method for probabilistic evaluation of liquefaction potential of soil using genetic programming. Int J Geomech 15(3):1–16. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000377

    Article  Google Scholar 

  • Muduli PK, Sarat KD (2014) Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model. Acta Geophys 62(3):529–543. https://doi.org/10.2478/s11600-013-0181-6

    Article  Google Scholar 

  • Muduli PK, Manas RD, Sarat KD, Swagatika S (2013) Prediction of lateral load capacity of piles using extreme learning machine. Int J Geotech Eng 7(4):388–394. https://doi.org/10.1179/1938636213Z.00000000041

    Article  Google Scholar 

  • Muduli PK, Sarat KD, Subhamoy B (2014) CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. In: Georisk: assessment and management of risk for engineered systems and geohazards, vol 8, no 1, pp 14–28, https://doi.org/10.1080/17499518.2013.845720

  • Muduli PK, Manas RD, Sarat KD, Swagatika S (2015) Lateral load capacity of piles in clay using genetic programming and multivariate adaptive regression spline. Indian Geotech J 45(3):349–359. https://doi.org/10.1007/s40098-014-0142-2

    Article  Google Scholar 

  • Muhamedyev RI, Kuchin YI, Muhamedyeva EL (2012) Geophysical research of boreholes: artificial neural networks data analysis. In: SCIS-ISIS 2012, Kobe, Japan, pp 825–829, IEEE

  • Mullarkey PW, Steven JF (1986) Fuzzy logic in a geotechnical knowledge-based system:CONE. Civil Eng Syst 3(2):58–81. https://doi.org/10.1080/02630258608970429

    Article  Google Scholar 

  • Nadiri AA, Nima C, Frank T-C, Asghar AM (2014) Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J Hydrol Eng 2014(19):520–532. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000824

    Article  Google Scholar 

  • Najjar YM, Imad AB, Hossam E, Richard LM (1999) Characterizing the swelling potential of soils via neuro-reliability approach. In: Intelligent engineering systems through artificial neural networks (ANNIE), Vol 9, pp 1201–1206

  • Nakhaee M, Ali L (2013) Genetic-based modeling of undrained lateral load capacity of piles in cohesion soil. Global J Sci Eng Technol 5:123–133

    Google Scholar 

  • Nama S, Apu KS, Sima G (2015) Parameters optimization of geotechnical problem using different optimization algorithm. Geotech Geol Eng 33:1235–1253. https://doi.org/10.1007/s10706-015-9898-0

    Article  Google Scholar 

  • Namdarvand FN, Alireza J, Gholamabbas S (2013) Estimation of soil compression coefficient using artificial neural network and multiple regressions. Int Res J Appl Basic Sci 4(10):3232–3236

    Google Scholar 

  • Narendra BS, Sivapullaiah PV, Suresh S, Omkar SN (2006) Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study. Comput Geotech 33(2006):196–208. https://doi.org/10.1016/j.compgeo.2006.03.006

    Article  Google Scholar 

  • Nassr A, Mahzad E-F, Hooshang K, Akbar J (2018) A new approach to modeling the behavior of frozen soils. Eng Geol. https://doi.org/10.1016/j.enggeo.2018.09.018

    Article  Google Scholar 

  • Nawari NO, Liang R (2000) Intelligent hybrid system for the design of pile foundations. In: ASCE geotechnical special publication, Issue Number: 100, New technological and design developments in deep foundations, pp 312-326, ISBN: 0784405115, ASCE

  • Nawari NO, Liang DR (2000b) Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters. Can Geotech J 37:1131–1140

    Google Scholar 

  • Nazir R, Ehsan M, Kadir M, Harnedi M (2015) An artificial neural network approach for prediction of bearing capacity of spread foundations in sand. Jurnal Teknologi Sci Eng 72(3):9–14

    Google Scholar 

  • Neaupane KM, Shiva HA, Mongkut P (2008) Landslide hazard assessment: a qualitative and a knowledge-based technique. In: Geocongress 2008: characterization, monitoring, and, modeling of geosystems, pp 870–877, ASCE

  • Negara A, Syed A, Ali A, Hasan K, Asok N, Zahra A, Baker H (2018) Utilizing artificial intelligence techniques for predicting rock failure parameters. In: SPE-192340-MS, SPE Kingdom of Saudi Arabia annual technical symposium and exhibition held in Dammam, Saudi Arabia, pp 23–26

  • Nejad FP, Jaksa MB (2011) Prediction of pile behavior using artificial neural networks based on standard penetration test data. In: 13th international conference of the IACMAG 2011–Melbourne, Australia, pp 564–569

  • Nejad FP, Mark BJ (2010) Prediction of pile settlement using artificial neural networks based on cone penetration test data. In: GeoFlorida 2010: advances in analysis, modeling and design, (GSP 199), pp. 1432–1441, ASCE

  • Nhu V-H, Nhat-Duc H, Van-Binh D, Hong-Dang V, Dieu TB (2019) A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam). Eng Comput. https://doi.org/10.1007/s00366-019-00718-z

    Article  Google Scholar 

  • Niu X, Shike Z (2017) Application of artificial intelligence inversion for characterization of geotechnical parameters. Boletín Técnico 55(1):103–110

    Google Scholar 

  • Nourani V, Ali B (2013) Integration of artificial neural networks with radial basis function interpolation in earthfill dam seepage modeling. J Comput Civil Eng 27:183–195. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000200

    Article  Google Scholar 

  • Nourani V, Hamid G (2012) Assessment of slope stability in Embankment dams using artificial neural network (case study: Zonouz Embankment Dam). In: International journal of advances in civil engineering and architecture (IJACEA), Vol 1, Issue 1, pp 65–75

  • Oberguggenberger M (2003) Fuzzy data in geotechnical models. Adv Math Comput Geomech. https://doi.org/10.1007/978-3-540-45079-5

    Article  Google Scholar 

  • Oberguggenberger M, Wolfgang F (2002) From probability to Fuzzy sets: the struggle for meaning in geotechnical risk assessment. In: R Potter, H Klapperich, HF Schweiger (eds), Probabilistics in geotechnics: technical and economic risk estimation, Verlag Gluckauf GmbH, Essen, pp 29–38

  • Ojo EB, Matawal DS (2014) Application of artificial neural network in monitoring seepage flow through Dadin Kowa dam, Gombe State Nigeria. In: Proceedings of the 8th European conference on numerical methods in geotechnical engineering, Delft, The Netherlands, pp 479–483, Taylor & Francis Group

  • Oommen T, Laurie GB (2008) A new approach to liquefaction potential mapping using satellite remote sensing and support vector machine algorithm. In: IGARSS 2008, pp 51–54, IEEE

  • Ornek M (2014) Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils. Neural Comput Appl 25:39–54. https://doi.org/10.1007/s00521-013-1444-5

    Article  Google Scholar 

  • Ornek M, Mustafa L, Ahmet D, Abdulazim Y (2012) Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found 52(1):69–80. https://doi.org/10.1016/j.sandf.2012.01.002

    Article  Google Scholar 

  • Ozbeka A, Mehmet U, Aydin D (2013) Estimating uniaxial compressive strength of rocks using genetic expression programming. J Rock Mech Geotechnica Eng 5(2013):325–329. https://doi.org/10.1016/j.jrmge.2013.05.006

    Article  Google Scholar 

  • Ozcep F, Eray Y, Okan T, Metin A, Savas K (2010) Correlation between electrical resistivity and soil-water content based artificial intelligent techniques. Int J Phys Sci 5(1):47–56

    Google Scholar 

  • Pal M (2011) Modelling pile capacity using generalised regression neural network. In: Indian Geotechnical Conference December 15-17, 2011, Kochi

  • Pal M, Surinder D (2008) Modeling pile capacity using support vector machines and generalized regression neural network. J Geotech Geoenviron Eng 134(7):1021–1024. https://doi.org/10.1061/ASCE1090-0241

    Article  Google Scholar 

  • Pan LX, Cao MS, Zhang YR, Novak D (2015) Parameter sensitivity analysis of geotechnical engineering system using neural network ensemble. In: International conference on artificial intelligence and industrial engineering (AIIE 2015), pp 196-199, Atlantis Press

  • Pancar EB, Erhan BP (2011) Information systems and artificial intelligence technology applied in pile design. In: International conference on advanced computing and communication technologies (ACCT 2011), pp 126–131, ISBN: 978-981-08-7932-7, RG Education Society

  • Pande GN, Hyu-Soung S (2004) Artificial intelligence v. equations. In: Proceedings of ICE civil engineering 157 February 2004, Paper 13242, 39–42, ICE

  • Park HI (2011) Study for application of artificial neural networks in geotechnical problems. In: C Leung, P Hui (eds) Artificial neural networks-application, Chapter 15, pp 303–336, ISBN: 978-953-307-188-6, InTech

  • Patel AK, Snehamoy C (2016) Computer vision-based limestone rock-type classification using probabilistic neural network. Geosci Front 7(2016):53–60. https://doi.org/10.1016/j.gsf.2014.10.005

    Article  Google Scholar 

  • Pavani M (2014) Application of functional network in geotechnical engineering, M.Sc. thesis, National Institute of Technology, Rourkela

  • Penumadu D, Rongda Z (2000) Modeling drained triaxial compression behavior of sand using ANN. In: GeoDenver 2000: Numerical methods in geotechnical engineering USA, pp 71–87, ASCE

  • Pereira C, Maranha IR, Brito A (2014) Advanced constitutive model calibration using genetic algorithms: some aspects. In: Proceedings of the 8th European conference on numerical methods in geotechnical engineering, Delft, The Netherlands, pp 485–490, Taylor & Francis Group

  • Pezeshk S, Camp CV, Karprapu S (1996) Geophysical log interpretation using neural network. J Comput Civil Eng 10(2):136–142

    Google Scholar 

  • Pham BT, Le HS, Tuan-Anh H, Duc-Manh N, Dieu TB (2018) Prediction of shear strength of soft soil using machine learning methods. CATENA 166(2018):181–191. https://doi.org/10.1016/j.catena.2018.04.004

    Article  Google Scholar 

  • Pieczarka K, Katarzyna P, Krzysztof L, Zygmunt O (2018) The use of artificial intelligence methods for optimization of tractive properties on Silty Clay Loam. J Res Appl Agric Eng 63(1):63–68

    Google Scholar 

  • Pirnia P, François D, Javad M (2018) Machine learning algorithms for applications in geotechnical engineering. In: Geo Edmonton, pp 1–7

  • Pramanik R, Dilip KB, Nirjhar D (2019) Fuzzy reliability analysis for elastic settlement of surface footing. In: Geo-Congress 2019 GSP 313, pp 183–192, ASCE

  • Prasad MA, Giridhar MVSS (2014) Fuzzy logic simulation for ground water recharge estimation using soil water balance method. Res Revol III(2): 51–56

  • Prayogo D, Yudas TTS (2018) Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine. Adv Civil Eng. https://doi.org/10.1155/2018/6490169

    Article  Google Scholar 

  • Provenzano P (2003) A Fuzzy-neural network method for modeling uncertainties in soil-structure interaction problems. Comput-Aided Civil Infrastruct Eng 18:391–411

    Google Scholar 

  • Puri N, Harsh DP, Ashwani J (2018) Prediction of geotechnical parameters using machine learning techniques. Procedia Comput Sci 125(2018):509–517. https://doi.org/10.1016/j.procs.2017.12.066

    Article  Google Scholar 

  • Qazi WH, Osman SBS, Muhammad BM (2016) Improvement of correlation using artificial neural networks technique for the prediction of resistivity against soil strength properties. Indian J Sci Technol 9(37):1–10. https://doi.org/10.17485/ijst/2016/v9i37/94351

    Article  Google Scholar 

  • Qi C, Xiaolin T (2018) Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Comput Ind Eng. https://doi.org/10.1016/j.cie.2018.02.028

    Article  Google Scholar 

  • Qi C, Andy F, Guowei M, Xiaolin T, Xuhao D (2018) Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability. J Comput Civil Eng 32(2):1–12. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000737

    Article  Google Scholar 

  • Rad HM, Vosoughi M, Sarrafi A (2014) Predicting the grouting ability of sandy soils by artificial neural networks based on experimental tests. Civil Eng Infrastruct J 47(2):239–253

    Google Scholar 

  • Rad HN, Iman B, Wan AWJ, Tahir MM, Loke KF (2019) Prediction of flyrock in mine blasting: a new computational intelligence approach. Nat Resour Res. https://doi.org/10.1007/s11053-019-09464-x

    Article  Google Scholar 

  • Ranasing MRATM, Jaksa MB (2016) Application of artificial intelligence techniques for rolling dynamic compaction. In: 11th Australia and New Zealand Young geotechnical professionals conference (11YGPC), pp 41–47

  • Ranasinghe RATM, Jaksa MB, Kuo YL, Nejad FP (2017) Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results. J Rock Mech Geotech Eng 9(2017):340–349. https://doi.org/10.1016/j.jrmge.2016.11.011

    Article  Google Scholar 

  • Ranasinghe RATM, Jaksa MB, Nejad FP, Kuo YL (2018) Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2018.10.007

    Article  Google Scholar 

  • Rangel J, Ursula I-V, Ayala AG, Francisco C (2005) Tunnel stability analysis during construction using a neuro-fuzzy system. Int J Numer Anal Methods Geomech 2005(29):1433–1456. https://doi.org/10.1002/nag.463

    Article  Google Scholar 

  • Rashidi M, Adel A, Biltayib MB (2019) Correlation between uniaxial compressive and shear strength data of limestone rocks by regression analysis and ANFIS model. In: Recent advances in geo-environmental engineering, geomechanics and geotechnics, and geohazards, advances in science, technology and innovation, pp 165–167, 10.1007/978-3-030-01665-4_39

  • Rashidian V, Hassanlourad M (2014) Application of an artificial neural network for modeling the mechanical behavior of carbonate soils. Int J Geomech 14(1):142–150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000299

    Article  Google Scholar 

  • Ravandi EG, Reza R, Amir EFM, Esmaeil GR (2013) Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation. Int J Min Sci Technol 23(2013):733–737. https://doi.org/10.1016/j.ijmst.2013.08.018

    Article  Google Scholar 

  • Rezaeeian A, Mohammad D, Mohammad KJ (2018) Determination of optimum cross section of earth dams using Ant colony optimization algorithm. Scientia Iranica. https://doi.org/10.24200/sci.2018.21078

    Article  Google Scholar 

  • Rezaei M, Abbas M, Masoud M (2014) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 24:233–241. https://doi.org/10.1007/s00521-012-1221-x

    Article  Google Scholar 

  • Rezaei H, Ramli N, Ehsan M (2016) Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J Zhejiang Univ Sci A Appl Phys Eng 17(4):273–285

    Google Scholar 

  • Rezania M, Javadi AA (2007) A new genetic programming model for predicting settlement of shallow foundations. Can Geotech J 44(2007):1462–1473. https://doi.org/10.1139/T07-063

    Article  Google Scholar 

  • Ribeiro AJA, Beiro CA, Uchôa da S, Suelly de HAB (2012) Proposition of a geotechnical mapping based on rtificial neural networks for the town of Caucaia, Ceará, Brazil for Paving Purposes. In: International journal of engineering and technology IJET-IJENS, vol 12, no 05, pp 65–74

  • Rim B, Emeriault F, Kastner R (2010) Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can Geotech J 47(2010):1214–1233. https://doi.org/10.1139/T10-023

    Article  Google Scholar 

  • Roy TK, Ambika K, Sudip KR (2012) Prediction of soaked CBR for subgrade layer by using artificial neural network model. In: S Chakraborty, G Bhattacharya (eds) Proceedings of the international symposium on engineering under uncertainty: safety assessment and management (ISEUSAM-2012), pp 1195–1206, https://doi.org/10.1007/978-81-322-0757-3_83

  • Saadata M, Manoj K, Monjezi M (2014) An ANN-based approach to predict blast-induced ground vibration ofGol-E-Gohar iron ore mine, Iran. J Rock Mech Geotech Eng 6:67–76. https://doi.org/10.1016/j.jrmge.2013.11.001

    Article  Google Scholar 

  • Saadatpour M, Abbas A, Mohammad HA (2011) Fuzzy pattern recognition method for assessing soil erosion. Environ Monit Assess 180:385–397. https://doi.org/10.1007/s10661-010-1794-8

    Article  Google Scholar 

  • Sabat AK (2015a) Prediction of maximum dry density and specific gravity of fly ash using support vector machine. EJGE 20(2015):155–166

    Google Scholar 

  • Sabat AK (2015b) Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine. EJGE 20(2015):981–991

    Google Scholar 

  • Sabbar AS, Amin C, Hamid N (2019) Prediction of liquefaction susceptibility of clean sandy soils using artificial intelligence techniques. Indian Geotech J 49(1):58–69. https://doi.org/10.1007/s40098-017-0288-9

    Article  Google Scholar 

  • Saeidi H, Mansour N-B (2010) The effect of step load moving on the surface of a cylindrical cavity using neural networks. Int Conf Recent Adv Geotech Earthq Eng Soil Dyn 52:1–8

    Google Scholar 

  • Saha A (2014) Artificial Bee Colony (ABC) algorithm applied to slope-stability in searching the critical surface. In: Geotechnique today-prediction, modelling and construction, Indian Geotechnical Society, pp 69–76

  • Saha S, Fan G, Xue L, Robert LL (2017) Prediction of soil-water characteristic curve using artificial neural network approach. PanAm Unsaturated Soils 2017 GSP 301, pp 124–134, ASCE

  • Sahoo R, Sarat KD (2016) Evaluation of liquefaction potential of soil based on standard penetration test using multivariate adaptive regression splines and multi-gene genetic programming. In: Indian Geotechnical Conference IGC2016, Madras, Chennai, India

  • Sakellariou MG, Ferentinou MD (2005) A study of slope stability prediction using neural networks. Geotech Geol Eng 23:419–445. https://doi.org/10.1007/s10706-004-8680-5

    Article  Google Scholar 

  • Salahudeen AB, Ijimdiya TS, Eberemu AO, Osinubi KJ (2018) Artificial neural networks prediction of compaction characteristics of black cotton soil stabilized with cement kiln dust. J Soft Comput Civil Eng 2–3(2018):50–71. https://doi.org/10.22115/SCCE.2018.128634.1059

    Article  Google Scholar 

  • Salehzadeh H, Ozouri A, Golestani AR (2011) Correlation between cone and standard penetration tests. In: 5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran

  • Salehzadeh H, Amir H, Ashkan N (2014) OCR of clays by CPTu data using EPR. EJGE 19:6585–6598

    Google Scholar 

  • Salem SS, Khalid E-Z (2010) Application of general regression neural networks (GRNNs) in assessing liquefaction susceptibility. Int Conf Recent Adv Geotech Earthq Eng Soil Dyn 3:1–8

    Google Scholar 

  • Salimi A, Christian M, Singh TN, Prasnna J (2015) TBM performance prediction in rock tunneling using various artificial intelligence algorithms. In: 11th Iranian and 2nd Regional Tunnelling Conference “Tunnels and the Future”

  • Salimi A, Jamal R, Christian M, Andrea D (2016) Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs. Tunnel Undergr Space Technol 58(2016):236–246. https://doi.org/10.1016/j.tust.2016.05.009

    Article  Google Scholar 

  • Samui P (2008) Prediction of friction capacity of driven piles in clay using the support vector machine. Can Geotech J 45(2008):288–295. https://doi.org/10.1139/T07-072

    Article  Google Scholar 

  • Samui P (2012) Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil. Int J Numer Anal Meth Geomech 36:100–110. https://doi.org/10.1002/nag.997

    Article  Google Scholar 

  • Samui P (2013) Slope stability analysis using multivariate adaptive regression spline. Metaheuristics Water Geotech Transp Eng 2013:327–342. https://doi.org/10.1016/B978-0-12-398296-4.00014-3

    Article  Google Scholar 

  • Samui P (2014) Vector machine techniques for modeling of seismic liquefaction data. Ain Shams Eng J 5:355–360. https://doi.org/10.1016/j.asej.2013.12.004

    Article  Google Scholar 

  • Samui P, Sitharam TG (2010) Site characterization model using artificial neural network and kriging. Int J Geomech 10:171–180. https://doi.org/10.1061/ASCE1532-3641201010:5171

    Article  Google Scholar 

  • Samui P, Sitharam TG (2011a) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11(2011):1–9. https://doi.org/10.5194/nhess-11-1-2011

    Article  Google Scholar 

  • Samui P, Sitharam TG (2011) Determination of liquefaction susceptibility of soil based on field test and artificial intelligence. In: International journal of earth sciences and engineering, Vol 04, No 02, pp 216–222, CAFET-INNOVA TECHNICAL SOCIETY

  • Samui P, Sarat KD, Sitharam TG (2009) Application of soft computing techniques to expansive soil characterization. In: K Gopalakrishnan et al. (eds) Intelligent and soft computing in infrastructure systems engineering, SCI, Vol 259, pp 305–323, Springer

  • Samui P, Yıldırım D, Jagan J (2015) Site characterization using GP, MARS and GPR. Handbook Genetic Programm Appl 13:345–357. https://doi.org/10.1007/978-3-319-20883-1_13

    Article  Google Scholar 

  • Santamarina JC (1987) Fuzzy sets and knowledge systems in geotechnical engineering, Ph. D. thesis, Purdue University

  • Santamarina JC, Chameau JL (1987) Expert systems for geotechnical engineers. J Comput Civil Eng 1:241–252

    Google Scholar 

  • Santra P, Bhabani SD, Debashish C (2011) Delineation of hydrologically similar units in a watershed based on fuzzy classification of soil hydraulic properties. Hydrol Process 25(2011):64–79. https://doi.org/10.1002/hyp.7820

    Article  Google Scholar 

  • Sanuade OA, Rasheed BA, Joel OA, Akindeji OF, Olayiwola GO (2017) Using artificial neural network to predict dry density of soil from thermal conductivity. In: RMZ–M&G, 2017, Vol 64, pp 237–249, https://doi.org/10.1515/rmzmag-2017-0012

  • Saride S, Sitharam TG, Anand JP (2010) Prediction of settlements of geocell reinforced sand foundations. Geotechnical Special Publication No. 207, GeoShanghai 2010 International Conference, pp 328–337, ASCE

  • Sariyar O, Ural DN (2010) Expert system approach for soil structure interaction and land use. J Urban Plan Dev 136(2):135–138. https://doi.org/10.1061/ASCE0733-9488

    Article  Google Scholar 

  • Sarkar G, Sumi S, Rajib B, Rokonuzzaman M (2015) Prediction of soil type and standard penetration test (SPT) value in Khulna City, Bangladesh using general regression neural network. Quarter J Eng Geol Hydrogeol 48(2015):190–203. https://doi.org/10.1144/qjegh2014-108

    Article  Google Scholar 

  • Sarmadian F, Mehrjardi RT (2008) Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan Province, North of Iran. Global J Environ Res 2(1):30–35

    Google Scholar 

  • Sasmal SK, Rabi NB (2018) Prediction of combined static and cyclic loadinduced settlement of shallow strip footing on granular soil using artificial neural network. Int J Geotech Eng. https://doi.org/10.1080/19386362.2018.1557384

    Article  Google Scholar 

  • Sayadi A, Monjezi M, Talebi N, Khandelwal M (2013) A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. J Rock Mech Geotech Eng 5(2013):318–324. https://doi.org/10.1016/j.jrmge.2013.05.007

    Article  Google Scholar 

  • Saygili G, Hanna AM, Ural D (2005) Neural network model for liquefaction potential in layered soils using Turkey and Taiwan earthquake data. In: GSP 133 earthquake engineering and soil dynamics, pp 1-15, ASCE

  • Senapati S (2013) Modelling of geotechnical structures using multivariate adaptive regression spline (MARS) and genetic programming (GP), M.Sc. thesis, National Institute of Technology, Rourkela

  • Shahin MA (2010) Intelligent computing for modeling axial capacity of pile foundations. Can Geotech J 47(2010):230–243. https://doi.org/10.1139/T09-094

    Article  Google Scholar 

  • Shahin MA (2013a) Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions. Metaheuristics Water Geotech Transp Eng 2013:169–204. https://doi.org/10.1016/B978-0-12-398296-4.00008-8

    Article  Google Scholar 

  • Shahin MA (2013) Artificial intelligence for modeling load-settlement response of axially loaded (steel) driven piles. In: 18th international conference on soil mechanics and geotechnical engineering, Paris 2013, pp 797–800

  • Shahin MA (2014a) Load–settlement modeling of axially loaded drilled shafts using CPT-based recurrent neural networks. Int J Geomech 14:1–7. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000370

    Article  Google Scholar 

  • Shahin MA (2014) Artificial intelligence for modeling load-settlement response of axially loaded bored piles. In: Proceedings of the 8th European conference on numerical methods in geotechnical engineering, Delft, The Netherlands, pp 491–495, Taylor & Francis Group

  • Shahin MA (2014c) Load–settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks. Soils Found 54(3):515–522. https://doi.org/10.1016/j.sandf.2014.04.015

    Article  Google Scholar 

  • Shahin MA (2015a) Genetic programming for modelling of geotechnical engineering systems. Handbook Genetic Program Appl 2:37–57. https://doi.org/10.1007/978-3-319-20883-1_2

    Article  Google Scholar 

  • Shahin MA (2015b) A review of artificial intelligence applications in shallow foundations. Int J Geotech Eng 9(1):49–60. https://doi.org/10.1179/1939787914Y.0000000058

    Article  Google Scholar 

  • Shahin MA (2016) State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci Front 7(2016):33–44. https://doi.org/10.1016/j.gsf.2014.10.002

    Article  Google Scholar 

  • Shahin MA, Indraratna B (2006) Modeling the mechanical behavior of railway ballast using artificial neural networks. Can Geotech J 43(2006):1144–1152. https://doi.org/10.1139/T06-077

    Article  Google Scholar 

  • Shahin MA, Jaksa MB (2005) Neural network prediction of pullout capacity of marquee ground anchors. Comput Geotech 32(2005):153–163. https://doi.org/10.1016/j.compgeo.2005.02.003

    Article  Google Scholar 

  • Shahin MA, Mark BJ (2006) Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Can Geotech J 43(2006):626–637. https://doi.org/10.1139/T06-029

    Article  Google Scholar 

  • Shahin MA, Mark BJ (2009) Intelligent computing for predicting axial capacity of drilled shafts. Int Found Congress Equip Expo. https://doi.org/10.1061/41022(336)4

    Article  Google Scholar 

  • Shahin MA, Jaksa MB, Maier HR (2000) Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks, Department of Civil and Environmental Engineering University of Adelaide, Research Report No. R 167

  • Shahin MA, Mark BJ, Holger RM (2001) Artificial neural network applications in geotechnical engineering, Australian Geomechanics–March 2001, pp 49–62

  • Shahin MA, Maier HR, Jaksa MB (2002a) Predicting settlement of shallow foundations using neural networks. J Geotech Geoenviron Eng 2002(128):785–793. https://doi.org/10.1061/ASCE1090-02412002128:9785

    Article  Google Scholar 

  • Shahin MA, Mark BJ, Holger RM (2002) Artificial neural network–based settlement prediction formula for shallow foundations on granular soils, Australian Geomechanics–September 2002, pp 45–52

  • Shahin MA, Maier HR, Jaksa MB (2003a) Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models. Comput Geotech 30(2003):637–647. https://doi.org/10.1016/j.compgeo.2003.09.004

    Article  Google Scholar 

  • Shahin MA, Mark BJ, Holger RM (2003) Applications of artificial neural networks in foundation engineering, Australian Geomechanics

  • Shahin MA, Maier HR, Jaksa MB (2004) Data division for developing neural networks applied to geotechnical engineering. J Comput Civil Eng 2004(18):105–114. https://doi.org/10.1061/~ASCE!0887-3801~2004!18:2~105!

    Article  Google Scholar 

  • Shahin MA, Jaksa MB, Maier HR (2005) Neural network based stochastic design charts for settlement prediction. Can Geotech J 42(2005):110–120. https://doi.org/10.1139/T04-096

    Article  Google Scholar 

  • Shahin MA, Mark BJ, Holger RM (2008) State of the art of artificial neural networks in geotechnical engineering. EJGE 13(2008):1–23

    Google Scholar 

  • Shahin MA, Mark BJ, Holger RM (2009) Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. Adv Artif Neural Syst 308239:1–9. https://doi.org/10.1155/2009/308239

    Article  Google Scholar 

  • Shahnazari H, Shahin MA, Tutunchian MA (2014) Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils. Int J Civil Eng 12(1):55–64

    Google Scholar 

  • Shahr-Babak MM, Mohammad JK, Kourosh Q (2016) Uplift capacity prediction of suction caisson in clay using a hybridintelligence method (GMDH-HS). Appl Ocean Res 59(2016):408–416. https://doi.org/10.1016/j.apor.2016.07.005

    Article  Google Scholar 

  • Shalmani AA, Mahmoud SS, Hossein A, Farid B (2010) Comparison of regression pedotransfer functions and artificial neural networks for soil aggregate stability simulation. World Appl Sci J 8(9):1065–1072

    Google Scholar 

  • Shang JQ, Ding W, Rowe RK, Josic L (2004) Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Can Geotech J 41(2004):1054–1067. https://doi.org/10.1139/T04-051

    Article  Google Scholar 

  • Sharghi E, Vahid N, Nazanin B (2018) Earthfill dam seepage analysis using ensemble artificial intelligence based modeling. J Hydroinf 66:1–14

    Google Scholar 

  • Sharma LK, Vikram V, Singh TN (2017) Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement. https://doi.org/10.1016/j.measurement.2017.01.043

    Article  Google Scholar 

  • Shatnawi A, Wassel ALB, Mutasim A-J, Bashar T (2019) Empirical formulas to predict the axial capacity of driven piles using in-situ dynamic load testing data. Int J Mach Learn Comput 9(2):129–134. https://doi.org/10.18178/ijmlc.2019.9.2.776

    Article  Google Scholar 

  • Sheng-Jun SHA, Hao X, Shu-Hua Z (2012) Constitutive model identification of rock based on artificial intelligence. Adv Mater Res 368–373(2012):2509–2516. https://doi.org/10.4028/www.scientific.net/AMR.368-373.2509

    Article  Google Scholar 

  • Shin HS, Park IJ, Pande GN (2008) Generalization of field measurement data based on a neural network. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1730–1736

  • Shinoda M, Yoshihisa M (2018) PSO-based stability analysis of unreinforced and reinforced soil slopes using non-circular slip surface. Acta Geotech. https://doi.org/10.1007/s11440-018-0678-x

    Article  Google Scholar 

  • Shirzadi A, Dieu TB, Binh TP, Karim S, Kamran C, Ataollah K, Himan S, Inge R (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76:60. https://doi.org/10.1007/s12665-016-6374-y

    Article  Google Scholar 

  • Singh Gurdeepak G, Walia BS (2017) Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks. Neural Comput Appl 28(Suppl 1):S289–S298. https://doi.org/10.1007/s00521-016-2345-1

    Article  Google Scholar 

  • Singh R, Ashutosh K, Singh TN (2012) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12(2012):40–45. https://doi.org/10.1016/j.asoc.2011.09.010

    Article  Google Scholar 

  • Singh V, Samreen B, Anand KY, Sabih A (2019) Feasibility of artificial neural network in civil engineering. In: International journal of trend in scientific research and development (IJTSRD), vol 3, no 3, pp 724-728, ISSN: 2456–6470

  • Sitharam TG, Shailendra K, Latha GM, Madhusudholl N (2003) Intelligent Prediction of Elastic Properties of Jointed Rocks. J Rock Mech Tunnel Tech 9(1):11–34

    Google Scholar 

  • Sivrikaya O, Mahmut B (2009) Approaches to estimate unconfined compressive strength of cohesive soils using artificial neural networks. In: International symposium on innovations in intelligent systems and applications, Trabzon, Turkey, pp 236–240

  • Solanki P, Musharraf Z, Ali E (2009) Regression and artificial neural network modeling of resilient modulus of subgrade soils for pavement design applications. In: K Gopalakrishnan et al. (eds) intelligent and soft computing in infrastructure systems engineering, SCI, vol 259, pp 269–304, Springer

  • Sousa LR, Tiago M, Rita LS, Joaquim T (2017) The use of data mining techniques in rockburst risk assessment. Engineering 3(2017):552–558. https://doi.org/10.1016/J.ENG.2017.04.002

    Article  Google Scholar 

  • Sriram D (1984) A bibliography on knqwledge-based expert systems in engineering, DRC-12-23-S4

  • Sub-committee A2K053 (1999) Use of artificial neural networks in geomechanical and pavement systems. In: Transportation research circular, Number E-C012, December 1999, ISSN 0097-8515

  • Suman S, Partha NM, Sarat KD (2015) Prediction of seismic attenuation in rocks using artificial intelligence techniques. In: 50th Indian geotechnical conference 17th–19th December 2015, Pune, Maharashtra, India

  • Suman S, Mahasakti M, Sarat KD (2016a) Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. Int J Geosynth Ground Eng 2(11):1–11. https://doi.org/10.1007/s40891-016-0051-9

    Article  Google Scholar 

  • Suman S, Khan SZ, Das SK, Chand SK (2016b) Slope stability analysis using artificial intelligence techniques. Nat Hazards 2016(84):727–748. https://doi.org/10.1007/s11069-016-2454-2

    Article  Google Scholar 

  • Suman S, Sarat KD, Ranajeet M (2016c) Prediction of friction capacity of driven piles in clay usig artificial intelligence techniques. Int J Geotech Eng. https://doi.org/10.1080/19386362.2016.1169009

    Article  Google Scholar 

  • Tabari H, Talaee PH, Patrick W (2015) Short-term forecasting of soil temperature using artificial neural network. Meteorol Appl 22(2015):576–585. https://doi.org/10.1002/met.1489

    Article  Google Scholar 

  • Taha MR, Firoozi A (2012) Estimating the clay Cohesion by means of artificial intelligence technique. J Asian Sci Res 2(11):651–657

    Google Scholar 

  • Taha MR, Mohammad K, Ahmed E-S (2010) Slope stability assessment using optimization techniques: an overview. EJGE 15(2010):1901–1915

    Google Scholar 

  • Talaee PH, Majid H, Parviz F, Safar M, Hossein T (2012) Numerical model and computational intelligence approaches for estimating flow through Rockfill Dam. J Hydrol Eng 17:528–536. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000446

    Article  Google Scholar 

  • Tarawneh B (2013) Pipe pile setup: database and prediction model using artificial neural network. Soils Found 53(4):607–615. https://doi.org/10.1016/j.sandf.2013.06.011

    Article  Google Scholar 

  • Tarawneh B (2016) “Predicting standard penetration test N-value from cone penetration test data using artificial neural networks. Geosci Front. https://doi.org/10.1016/j.gsf.2016.02.003

    Article  Google Scholar 

  • Tarawneh B (2018) Gene expression programming model to predict driven pipe piles set-up. Int J Geotech Eng 2018:1–8. https://doi.org/10.1080/19386362.2018.1460964

    Article  Google Scholar 

  • Teh CI, Wong KS, Goh ATC, Jaritngam S (1997) Prediction of pile capacity using neural networks. J Comput Civil Eng 11(2):129–138

    Google Scholar 

  • Thomas S, Pillai GN, Kirat P, Zuhair M (2013) Prediction of peak ground acceleration (PGA) using artificial neural networks. In: International conferences on advances in computer science, AETACS, pp 270–276, Elsevier

  • Tinoco J (2012) Application of data mining techniques to jet grouting columns design, Ph. D. thesis, University of Minho, Portugal

  • Tinoco J, Correia AG, Paulo C (2001) A data mining approach for jet grouting uniaxial compressive strength prediction. In: 2009 World congress on nature and biologically inspired computing (NaBIC 2009), pp 553–558, IEEE

  • Tinoco J, Correia AG, Cortez P (2011) Data mining approach for predicting jet grouting geomechanical parameters. In: Geotechnical Special Publication No. 223 © ASCE 2011, pp 97–104, ASCE

  • Tinoco J, Correia AG, Paulo C (2011b) Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time. Constr Build Mater 25(2011):1257–1262. https://doi.org/10.1016/j.conbuildmat.2010.09.027

    Article  Google Scholar 

  • Tinoco J, Correia AG, Paulo C (2011) Using data mining techniques to predict deformability properties of jet grouting laboratory formulations over time. In: 15th Portuguese conference on artificial intelligence, EPIA 2011 Lisbon, Portugal, pp 491–505, https://doi.org/10.1007/978-3-642-24769-9, Springer

  • Tinoco J, Correia AG, Paulo C (2011) Support vector machines in mechanical properties prediction of jet grouting columns. Semana da Escola de Engenharia

  • Tinoco J, Alberto A, Paulo da V, Correia AG, Luís L (2016) A data-driven approach for qu prediction of aboratory soil-cement mixtures. In: The 3rd international conference on transportation geotechnics (ICTG 2016), pp 566–573, https://doi.org/10.1016/j.proeng.2016.06.073, Elsevier

  • Tinoco J, Correia AG, Paulo C, David T (2018) Artificial neural networks for rock and soil cutting slopes stability condition prediction. In: 2nd GeoMEast international congress and exhibition on sustainable civil infrastructures, Egypt, pp 105–114, 10.1007/978-3-030-02032-3_10, Springer

  • Toll DG, Giolas A (1998) Representing geotechnical properties in a knowledge-based system. Adv Eng Softw 29(7–9):627–636

    Google Scholar 

  • Tolon M, Derin NU (2012) Geotechnical considerations for offshore wind turbines based on neural network. In: The 2012 world congress on advances in civil, environmental, and materials research (ACEM’ 12) Seoul, Korea, August 26-30, 2012, pp 3265–3276

  • Touran A (1990) Expert system for compactor selection. J Transp Eng 116(3):338–348

    Google Scholar 

  • Tran H-H, Nhat-Duc H (2014) An artificial intelligence approach for groutability estimation based on autotuning support vector machine. J Constr Eng. https://doi.org/10.1155/2014/109184

    Article  Google Scholar 

  • Tran KT, Michael MV, Rodrigo H, Peter L (2012) Estimating static tip resistance of driven piles with bottom pile instrumentation. Can Geotech J 49(2012):381–393. https://doi.org/10.1139/T2012-001

    Article  Google Scholar 

  • Trivedi JS, Andeep N, Chakradhar I (2013) optimum utilization of fly ash for stabilization of sub-grade soil using genetic algorithm. Procedia Eng 51(2013):250–258. https://doi.org/10.1016/j.proeng.2013.01.034

    Article  Google Scholar 

  • Trivedi R, Singh TN, Raina AK (2014) Prediction of blast-induced flyrock in Indian limestone mines using neural networks. J Rock Mech Geotech Eng 6(2014):447–454. https://doi.org/10.1016/j.jrmge.2014.07.003

    Article  Google Scholar 

  • Tsangaratos P, Andreas B (2014) Estimating landslide susceptibility through a artificial neural network classifier. Nat Hazards 74:1489–1516. https://doi.org/10.1007/s11069-014-1245-x

    Article  Google Scholar 

  • Tsangaratos P, Benardos A (2013) Applying artificial neural networks in slope stability related phenomena. Bull Geol Soc Greece 47(4):1901–1911. https://doi.org/10.12681/bgsg.10945

    Article  Google Scholar 

  • Tsiaousi D, Thaleia T, Vasilis D, Jose U, Jacob C (2018) Machine learning applications for site characterization based on CPT data. Geotech Earthq Eng Soil Dyn 293:461–472

    Google Scholar 

  • Tsompanakis Y, Nikos DL, Prodromos NP, Evaggelos CG (2009) Simulating the seismic response of embankments via artificial neural networks. Adv Eng Softw 40:640–651. https://doi.org/10.1016/j.advengsoft.2008.11.005

    Article  Google Scholar 

  • Tumay MT, Murad YA-F, Zhongjie Z (2008) From theory to implementation of a CPT-based probabilistic and fuzzy soil classification. In: From research to practice in geotechnical engineering congress, pp 259–276, ASCE

  • Turan A, Sean DH, El Naggar MH (2008) Predicting the dynamic properties of glyben using a modular neural network (MNN). Can Geotech J 45(2008):1629–1638. https://doi.org/10.1139/T08-054

    Article  Google Scholar 

  • Turk G, Ogar J, Majes B (2001) Modelling soil behaviour in uniaxial strain conditions by neural networks. Adv Eng Softw 32(10–11):805–812. https://doi.org/10.1016/S0965-9978(01)00032-1

    Article  Google Scholar 

  • Ukritchon B, Suraparb K (2016) A practical method for the optimal design of continuous footing using Ant-Colony optimization. Acta Geotechnica Slovenica 2:45–55

    Google Scholar 

  • Ural DN, Mert T (2008) Slope stability during earthquakes: a neural network application. In: Geocongress 2008: characterization, monitoring, and, modeling of geosystems, pp 878–885, ASCE

  • Uyumaz A, Abdüsselam A, Mehmet O (2006) Fuzzy logic model for equilibrium scour downstream of a Dam’s Vertical Gate. J Hydraul Eng 132:1069–1075. https://doi.org/10.1061/ASCE0733-9429

    Article  Google Scholar 

  • Valliappan S, Pham TD (1993) Fuzzy finite element analysis of a foundation on an elastic soil medium. Int J Numer Anal Methods Geomech 17:771–789

    Google Scholar 

  • Van den Adel JF, Al-Jibouri SH, Karim UFA, Mawdesley M (2000) GROUNDSS: integrated foundation design expert system. Comput Civil Build Eng 50:1180–1187

    Google Scholar 

  • Vergobbi P, Alain P, Geodia, Yves M, Gilles F (1992) Sagitaire: an artificial intelligence software dedicated to the geotechnical engineering of offshore structures. In: Offshore technology conference (OTC 6864), Houston, Texas, pp 471–478

  • Verma AK, Singh TN (2013) A neuro-fuzzy approach for prediction of longitudinal wave velocity. Neural Comput Appl 22:1685–1693. https://doi.org/10.1007/s00521-012-0817-5

    Article  Google Scholar 

  • Viloria JA, Alvaro V-B, María CP, Angel V (2016) Digital modelling of landscape and soil in a mountainous region: a neuro-fuzzy approach. Geomorphology 253(2016):199–207. https://doi.org/10.1016/j.geomorph.2015.10.007

    Article  Google Scholar 

  • Viswanathan R, Pijush S (2016) Determination of rock depth using artificial intelligence techniques. Geosci Front 7(2016):61–66. https://doi.org/10.1016/j.gsf.2015.04.002

    Article  Google Scholar 

  • Wanga Y, Xinyi Z, Baotian W (2013) LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation. J Rock Mech Geotechn Eng 5(2013):312–317. https://doi.org/10.1016/j.jrmge.2012.06.003

    Article  Google Scholar 

  • Wei L, Qing Z (2000) An AI integrated system for NATM in tunnel engineering. In: Computing in civil and building engineering, pp 1188–1195, ASCE

  • Weihua F (2012) Back-analysis improved particle Swarm optimization algorithm on mechanical parameters of divisional geotechnical engineering material. Appl Mech Mater 182–183(2012):1647–1653. https://doi.org/10.4028/www.scientific.net/AMM.182-183.1647

    Article  Google Scholar 

  • Wislocki AP, Bentley SP (1991) An expert system for landslide hazard and risk assessment. Comput Struct 40(1):169–172

    Google Scholar 

  • Wong KC, Poulos HG, Thorne CP (1989) Site classification by expert systems. Comput Geotech 8:133–156

    Google Scholar 

  • Xiao W-Q, Bo R (2009) Optimization methods for design of the stabilizing piles in landslide treatment. In: GeoHunan international conference, pp 174–183, ASCE

  • Xu W, Shao F (1998) Artificial neural network analysis for the evaluation of slope stability. In: Fourth European conference on numerical methods in geotechnical engineering numge98 Udine, Italy, pp 665–672, Springer

  • Xu L, Xuedong G, Lei N, Yongmei Q (2016) Back analysis on mechanical parameters of interface between pile and soil based on BP neural network. In: International journal of earth sciences and engineering ISSN 0974-5904, vol 09, no 06, pp 2802–2809

  • Xue X (2016) Prediction of slope stability based on hybrid PSO and LSSVM. J Comput Civil Eng 04016041:1–10. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000607

    Article  Google Scholar 

  • Yagiz S, Sezer EA, Gokceoglu (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive trength and modulus of elasticity for carbonate rocks. Int J Numer Anal Meth Geomech 36:1636–1650. https://doi.org/10.1002/nag.1066

    Article  Google Scholar 

  • Yagiz S, Ebrahim G, Amoussou CA (2018) Prediction of rock brittleness using genetic algorithm and particle Swarm optimization techniques. Geotech Geol Eng 36:3767–3777. https://doi.org/10.1007/s10706-018-0570-3

    Article  Google Scholar 

  • Yang Y, Rosenbaum MS (2002) The arti¢cial neural network as a tool for assessing geotechnical properties. Geotech Geolog Eng 20: 149–168

  • Yang Y, Xuegang H, Xiaojie W, Qiongfang Z, Chen L (2012) Application of Fuzzy cluster to geotechnical stratums division. Adv Mater Res 378–379(2012):507–511. https://doi.org/10.4028/www.scientific.net/AMR.378-379.507

    Article  Google Scholar 

  • Yasrebi SSH, Emami M (2008) Application of artificial neural networks (ANNs) in prediction and interpretation of pressuremeter test results. In: 12th international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 1634–1638

  • Yeh Y-C, Yau-Hwaug K, Deh-Shiu H (1993) Building KBES for diagnosing pc pile with artificial neural network. J Comput Civil Eng 7(1):71–93. https://doi.org/10.1061/(ASCE)0887-3801(1993)7:1(71)

    Article  Google Scholar 

  • Yin Z-Y, Yin-Fu J, Jack SS, Pierre-Yves H (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42:70–94. https://doi.org/10.1002/nag.2714

    Article  Google Scholar 

  • Yoo C, Haider SA, Qaisar A, Jaewon Y (2018) Artificial intelligence (AI)-based deep excavation designed program. J. Korean Geosynthetics Society 17(4):277–292. https://doi.org/10.12814/jkgss.2018.17.4.277

    Article  Google Scholar 

  • Young-Su K, Kim B-T (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132:1502–1504. https://doi.org/10.1061/ASCE1090-02412006132:111502

    Article  Google Scholar 

  • Yousefpour N, Sogol F (2018) Application of machine learning in geotechnics. https://www.researchgate.net/publication/327338485_Application_of_Machine_Learning_in_Geotechnics

  • Zadhesh J, Fuad R, Faraydoun S, Hasel A, Hossein MN (2015) Consolidation grouting quality assessment using artificial neural network (ANN). Indian Geotech J 45(2):136–144. https://doi.org/10.1007/s40098-014-0116-4

    Article  Google Scholar 

  • Zaman M, Pranshoo S, Ali E, Luther W (2010) Neural network modeling of resilient modulus using routine subgrade soil properties. In: International journal of geomechanics, vol 10, no 1, pp 1–12, ISSN 1532-3641, ASCE

  • Zhang Z, Mehmet TT (1999) Statistical to Fuzzy approach toward CPT soil classification. J Geotech Geoenviron Eng 125(3):179–186

    Google Scholar 

  • Zhang Z, Mehmet TT (2003) Non-traditional approaches in soil classification derived from the cone penetration test. In: ASCE Special Publication No. 121 on probabilistic site characterization at the national geotechnical experimentation sites, pp 101–149, ISBN 0-7844-06693, ASCE

  • Zhang Y, Gallipoli D, Augarde CE (2009a) Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization. Comput Geotech 36(4):604–615. https://doi.org/10.1016/j.compgeo.2008.09.005

    Article  Google Scholar 

  • Zhang Y, Domenico G, Charles A (2009) Parallel hybrid particle swarm optimization and applications in geotechnical engineering. In: Advances in computation and intelligence. Heidelberg: Springer Berlin, pp 466–475, https://doi.org/10.1007/978-3-642-04843-249

  • Zhang Z, Zaobao L, Lifeng Z, Yu Z (2014) Development of an adaptive relevance vector machine approach for slope stability inference. Neural Comput Appl 25:2025–2035. https://doi.org/10.1007/s00521-014-1690-1

    Article  Google Scholar 

  • Zhang L, Xianguo W, Wenying J, Simaan MA (2016a) Intelligent approach to estimation of tunnel-induced ground settlement using wavelet packet and support vector machines. J Comput Civil Eng 04016053:1–14. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000621

    Article  Google Scholar 

  • Zhang L, Xianguo W, Yawei Q, Miroslaw JS, Wenli L (2016b) Towards a Fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Anal 36(2):278–301. https://doi.org/10.1111/risa.12448

    Article  Google Scholar 

  • Zhao N (2014) The application of BP artificial neural network in geotechnical engineering. Appl Mech Mater 580–583(2014):823–826. https://doi.org/10.4028/www.scientific.net/AMM.580-583.823

    Article  Google Scholar 

  • Zhao AJ, Xu BC, Yan CY, Ma DJ (2012) Predictive study on ultimate bearing capacity of static pressure pipe pile based on grey support vector machine. In: Earth and Space 2012, pp 1187–1195, ASCE

  • Zhao H, Ming Z, Changxing Z (2016) Reliability-based optimization of geotechnical engineering using the artificial Bee Colony algorithm. KSCE J Civil Eng 20(5):1728–1736. https://doi.org/10.1007/s12205-015-0117-6

    Article  Google Scholar 

  • Zhou M-M, Ahmed M, Günther M (2015) Modeling and optimization of ground freezing in tunneling. In: ITA WTC 2015 Congress and 41st General Assembly, 2015, Lacroma Valamar Congress Center, Dubrovnik, Croatia

  • Zhu J-H, Musharraf MZ, Scott AA (1998) Modeling of soil behavior with a recurrent neural network. Can Geotech J 35:858–872

    Google Scholar 

  • Zhu C, Hongbo Z, Ming Z (2014) Back analysis of geomechanical parameters in underground engineering using artificial Bee Colony. Sci World J. https://doi.org/10.1155/2014/693812

    Article  Google Scholar 

  • Ziaee SA, Ehsan S, Amir HA, Danial MS (2015) Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies. Environ Earth Sci 2015(73):3417–3431. https://doi.org/10.1007/s12665-014-3630-x

    Article  Google Scholar 

  • Zounemat-Kermani M (2013) Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: case study in Wyoming. J Hydrol Eng 18:707–718. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Ebid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebid, A.M. 35 Years of (AI) in Geotechnical Engineering: State of the Art. Geotech Geol Eng 39, 637–690 (2021). https://doi.org/10.1007/s10706-020-01536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-020-01536-7

Keywords

Navigation