Skip to main content
Log in

Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In recent times, FET-based sensors have been widely used in industrial and domestic applications due to their low cost and high sensitivity. In this paper, a nanogap-embedded gate-all-around junctionless transistor (GAA JLT) is proposed for label-free electrochemical detection of neutral biomolecule species such as Uricase, Protein, ChOx, APTES and Streptavidin. Shifts in subthreshold current, threshold voltage and capacitance are used to predict the response of the sensor. Impact of cavity width, cavity length, and gate length on the sensitivity of a junctionless transistor has also been investigated in detail. An analytical model has been developed for a GAA JLT-based biosensor. The results are compared with an inversion mode transistor-based biosensor using TCAD numerical simulation. The GAA JLT shows very high sensitivity due to the gate all around structure and bulk conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wong, H.S.P.: Beyond the conventional MOSFET. In: Proceeding of 31th European Solid State Device Research Conference, p. 69 (2011)

  2. Lion, Y.B., Chaing, M.H., Damrongplasit, N., Hsu, W.C., Liu, T.J.K.: Design of gate-all-around silicon MOSFETs for 6-T SRAM area efficients and yield. IEEE Trans. Electron Devices 61(7), 2371–2377 (2014)

    Article  Google Scholar 

  3. Kaushal, G., Manhas, S.K., Maheshwaram, S., Anand, B., Dasgupta, S., Singh, N.: Novel design methodology using LEXT sizing in nanowire CMOS logic. IEEE Trans. Electron Devices 13(4), 650–658 (2014)

    Google Scholar 

  4. Lee, C., Zhuang, Y., Di, S., Han, R.: Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Electron Device Lett. 60(11), 3655–3662 (2013)

    Article  Google Scholar 

  5. Nayak, K., Bajaj, M., Konar, A., Oldiges, P.J., Natori, K., Iwani, H., Murli, K.V.R.M., Rao, V.R.: CMOS logic device and circuit performance of Si gate all around nanowire MOSFET. IEEE Trans. Electron Devices 61(9), 3066–3074 (2014)

    Article  Google Scholar 

  6. Wang, T., Lou, L., Lee, C.: A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Devices Lett. 34(4), 478–480 (2013)

    Article  Google Scholar 

  7. Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3), 620–625 (2010)

    Article  Google Scholar 

  8. Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M., Lee, C.W., Ferain, I., Akhavan, N., Yan, R., Razavi, P., Yu, R., Kranti, A., Colinge, J.P.: Analog operation temperature dependence of nMOS junctionless transistors focusing on harmonic distortion. J. Integr. Circuit Syst. 6(5), 114–120 (2011)

    Google Scholar 

  9. Mathew, L., Du, Y., Thean, A.V.Y., Sadd, M., Vandooren, A., Prher, C., Steehehens, T., et al.: CMOS vertical multiple independent gate field effect transistor (MIGFET). In: Proceeding of IEEE International SOI Conference, pp. 187–189 (2004)

  10. Mathew, L., Du, Y., Kalpat, S., Sadd, M., Zavala, M., et al.: Multiple independent gate field effect transistor (MIGFET)—multi-fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics beyond the conventional MOSFET. In: Proceeding of 31th Symposium on VLSI Technology Digest of Technical Papers Conference, pp. 200–201 (2005)

  11. Rostami, M., Mohanram, K.: Dual-Vth independent gate FinFets for low power logic circuits. IEEE Trans. Electron Devices 58, 567–571 (2011)

    Article  Google Scholar 

  12. Xiang, L., Chen, Z., Shen, N., Singh, N., Banerjee, K., Lo, G.Q., Knong, D.L.: Vertically stacked and independently controlled twin-gate MOSFETs on a single silicon nanowire. IEEE Electron Devices Lett. 32(11), 1492–1494 (2011)

    Article  Google Scholar 

  13. Zhang, J., Gaillardon, P.E., Micheli, G.: Dual-threshold voltage configurable circuits with three independent gate silicon nanowire FETs. IEEE Trans. Electron Devices 58, 567–571 (2013)

    Google Scholar 

  14. Jeon, D.Y., Park, S.J., Mouis, M., Barraud, S., Kim, G.T., Ghibaudo, G.: Low-temperature electrical characterization of junctionless transistors. Solid State Electron. 80, 135–141 (2013)

    Article  Google Scholar 

  15. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., Neill, B.O., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  16. Hyungsoon, I.M., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007)

    Article  Google Scholar 

  17. Ghosh, D., Parihar, M., Armstrong, G., Kranti, A.: High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett. 33(10), 1477–1479 (2012)

    Article  Google Scholar 

  18. Doria, R.T., Pavanello, M., Trevisoli, R.D., Souza, M., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)

    Article  Google Scholar 

  19. Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Localised charge dependent threshold voltage analysis of gate-material-engineered junctionless nanowire transistor. IEEE Trans. Electron Devices 62, 2598–2605 (2015)

    Article  Google Scholar 

  20. Moon, D.I., Choi, S.J., Duarte, J.P., Choi, Y.K.: Investigation of silicon nanowire gate all around junctionless transistors built in bulk substrate. IEEE Trans. Electron Devices 60(4), 1355–1359 (2013)

    Article  Google Scholar 

  21. Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Performance evaluation and reliability issues of junctionless CSG MOSFET for RFIC design. IEEE Trans. Device Mater. Reliab. 14(1), 418–425 (2014)

    Article  Google Scholar 

  22. ATLAS 3D Device Simulator . SILVACO Int., Santa Clara (2014)

  23. Cong, L., Yiqi, Z., Ru, H.: New analytical threshold voltage model for halo-doped cylindrical surrounding-gate MOSFETs. J. Semicond. 32(7), 1–8 (2011)

    Google Scholar 

  24. Chiang, T.K.: A compact model for threshold voltage of surrounding-gate MOSFETs with localised interface trapped charges. IEEE Trans. Electron Devices 58, 567–571 (2011)

    Article  Google Scholar 

  25. Pratap, Y., Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectron. J. 45(4), 408–415 (2014)

    Article  Google Scholar 

  26. Choi, S.J., Moon, D.I., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32, 125–132 (2011)

    Article  Google Scholar 

  27. Kumari, V., Saxena, M., Gupta, R.S., Gupta, M.: Two-dimensional analytical drain current model for double-gate MOSFET incorporating dielectric pocket. IEEE Trans. Electron Devices 59(10), 2567–2574 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

That authors would like to thank the University Grant Commission (UGC) and DRDO, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Gupta.

Appendix

Appendix

Coefficients of Eqs. (20)–(23) are given as;

$$\begin{aligned} \eta _{1}= & {} \frac{2}{a^{2}\left[ {J_1^2 \left( K \right) +J_0^2 \left( K \right) } \right] } \end{aligned}$$
(A1)
$$\begin{aligned} \eta _{2}= & {} \frac{a^{2}\eta _1 l_\mathrm{SD}^2 \xi J_1 (K)}{2K} \end{aligned}$$
(A2)
$$\begin{aligned} \tau _1= & {} \frac{a^{2}\eta _1 J_1 \left( K \right) }{K}\left( {V_\mathrm{R} -V_\mathrm{gs} +V_\mathrm{fb1} -\frac{qaN_\mathrm{D} }{2C_\mathrm{GAA1}}} \right) \nonumber \\&-\frac{a^{4}\eta _1 \xi J_2 \left( K \right) }{2K^{2}} \end{aligned}$$
(A3)
$$\begin{aligned} \tau _2= & {} \frac{a^{3}\eta _1 \xi J_1 \left( K \right) }{K^{2}} \end{aligned}$$
(A4)
$$\begin{aligned} \tau _4= & {} \frac{a^{2}\eta _1 J_1 \left( K \right) }{K}\left( {V_\mathrm{R}+V_\mathrm{ds}-V_\mathrm{gs} +V_\mathrm{fb2}-\frac{qaN_\mathrm{D}}{2C_\mathrm{GAA2}}} \right) \nonumber \\&-\frac{a^{4} \eta _{1} \xi J_2 \left( K \right) }{2K^{2}}. \end{aligned}$$
(A5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratap, Y., Kumar, M., Kabra, S. et al. Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J Comput Electron 17, 288–296 (2018). https://doi.org/10.1007/s10825-017-1041-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1041-4

Keywords

Navigation