Skip to main content
Log in

Roughening transition of grain boundaries in metals and oxides

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Extensive theoretical analysis and experimental observations show surface roughening transitions of crystals. The surface roughening is characterized by step free energy, which gradually decreases to 0 at the roughening transition temperature. For a crystal of finite size, the surface roughening transition is manifested by gradual increase of the curved edge and corner areas. In alloys, the interfaces between the solid and the liquid phases can be either singular, partially rough, or completely rough at different temperatures. Their thermally induced roughening transitions are similar to those of the solid-vapor interfaces. The interface roughening and the reverse transition to singular structures can also be induced by additives. The grain boundaries of any misorientation angles in oxides and metals also show roughening transitions. The singular grain boundaries have either flat, hill-and-valley, or kinked shapes, and with temperature increase or composition changes, they become defaceted to curved shapes. These defaceted grain boundaries are rough. It is thus possible to produce either singular or rough grain boundaries by heat-treatment or additives to vary their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Herring, Phys. Rev. 82 (1951) 87.

    Article  Google Scholar 

  2. W. K. Burton and N. Cabrera, Dis. Faraday Soc. 5 (1949) 33.

    Article  Google Scholar 

  3. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. R. Soc. London Sect. A 243 (1951) 299.

    Google Scholar 

  4. F. C. Frank, in “Metal Surfaces: Structure, Energetics, and Kinetics”, edited by W. D. Robertson and N. A. Gjostein (American Society for Metals, Metals Park, OH, 1963) p. 1.

    Google Scholar 

  5. J. D. Weeks and G. H. Gilmer, in “Advances in Chemical Physics”, edited by I. Prigogine and S. A. Rice, (Wiley, NY, 1979) Vol. 40, p. 157.

    Google Scholar 

  6. J. D. Weeks, in “Ordering in Strongly Fluctuating Condensed Matter Systems”, edited by T. Riste (Plenum, New York, 1980) p. 293.

    Google Scholar 

  7. H. van Beijeren and I. Nolden, in “Structure and Dynamics of Surfaces II: Phenomena, Models, and Method”, edited by W. Schommers and P. von Blanckenhagen (Springer-Verlag, Berlin, 1987) p. 259.

    Google Scholar 

  8. M. Wortis, in “Chemistry and Physics of Solid Surfaces VII”, edited by R. Banselow and R. F. Howe (Springer-Verlag, Berlin, 1987) p. 367.

    Google Scholar 

  9. E. H. Conrad, Prog. Surf. Sci. 39 (1992) 65.

    Article  Google Scholar 

  10. C. Rottman, Phy. Rev. Lett. 57 (1986) 735.

    Article  Google Scholar 

  11. T. E. Hsieh and R. W. Balluffi, Acta Metall. 37 (1989) 2133.

    Article  Google Scholar 

  12. T. G. Ference and R. W. Balluffi, Scripta Metall. 22 (1988) 1929.

    Article  Google Scholar 

  13. J. R. Rellick, C. J. McMahon Jr., H. L. Marcus, and P. W. Palmberg, Metall. Trans. 2 (1971) 1492.

    Google Scholar 

  14. G. Henry, J. Plateau, X. Wache, M. Gerber, I. Behar and C. Crussard, Mem. Sci. Rev. Metall. 56 (1959) 417.

    Google Scholar 

  15. S. B. Lee, N. M. Hwang, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 31 (2000) 985.

    Google Scholar 

  16. J. B. Koo and D. Y. Yoon, Metall. Mater. Trans. A. 32 (2001) 469.

    Google Scholar 

  17. C. W. Park and D. Y. Yoon, J. Am. Ceram. Soc. 83 (2000) 2605.

    Google Scholar 

  18. C. W. Park, D. Y. Yoon, J. E. Blendell and C. A. Handwerker, J. Am. Ceram. Soc. 83 (2003) 603.

    Google Scholar 

  19. T. Yamamoto, British Ceram. Trans. 94 (1995) 196.

    Google Scholar 

  20. T. Yamamoto and T. Sakuma, Mater. Sci. Forum 204–206 (1996) 491.

    Google Scholar 

  21. B.-K. Lee, S.-Y. Chung and S.-J. L. Kang, Acta Mater. 48 (2000) 1575.

    Article  Google Scholar 

  22. Y. K. Cho, S.-J. L. Kang and D. Y. Yoon, J. Am. Ceram. Soc. submitted for publication.

  23. S. B. Lee, S.-Y. Choi and D. Y. Yoon, Z. Metallkd. 94 (2003) 193.

    Google Scholar 

  24. S. B. Lee, W. Sigle and M. Rühle, Acta Mater. 50 (2002) 2151.

    Article  Google Scholar 

  25. L. S. Shvindlerman and B. B. Straumal, Acta Metall 33 (1985) 1735.

    Article  Google Scholar 

  26. T. Watanabe, S.-I. Kimura and S. Karashima, Phil. Mag. A 49 (1984) 845.

    Google Scholar 

  27. P. Lagarde and M. Biscondi, Mém. Sci. Rev. Métall. 71 (1974) 121.

    Google Scholar 

  28. P. Lagarde and M. Biscondi, Can. Metall. Quart. 13 (1974) 245.

    Google Scholar 

  29. K. T. Aust, in “Interfaces Conference, Melbourne”, edited by R. C. Gifkins (The Australian Institute of Metals, Butterworth, London, 1969) p. 307.

    Google Scholar 

  30. S. T. Tsurekawa and H. Nakashima, Mater. Sci. Forum 204–206 (1996) 221.

    Google Scholar 

  31. S. T. Tsurekawa, T. Ueda, K. Ichikawa, H. Nakashima, Y. Yoshitomi and H. Yoshinaga, Mater. Sci. Forum 294–296 (1999) 629.

    Google Scholar 

  32. L. Onsager, Phys. Rev. 65 (1944) 117.

    Article  Google Scholar 

  33. S. T. Chui and J. K. Weeks, Phys. Rev. B 14 (1972) 4978.

    Google Scholar 

  34. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6 (1973) 1181.

    Google Scholar 

  35. H. J. Leamy and G. H. Gilmer, J. Cryst. Growth 24/25 (1974) 499.

    Article  Google Scholar 

  36. H. van Beijeren, Phys. Rev. Lett. 38 (1977) 993.

    Article  Google Scholar 

  37. C. Rottman and M. Wortis, Phys. Rep. 103 (1984) 59.

    Article  Google Scholar 

  38. J. E. Avron, L. S. Balfour, C. G. Kuper, J. Landau, S. G. Lipson and L. S. Schulman, Phys. Rev. Lett. 45 (1980) 814.

    Article  Google Scholar 

  39. S. Balibar and B. Castaing, J. Physique Lett. 41 (1980) L-32.

    Google Scholar 

  40. K. O. Keshishev, A. Y. Parshin and A. V. Babkin, Zh. Eksp. Teor. Fiz. 80 (1981) 716. (Sov. Phys. JETP 53 (1981) 362).

    Google Scholar 

  41. P. E. Wolf, F. Gallet, S. Balibar, E. Rolley and P. Noziéres, J. Physique 46 (1985) 1987.

    Google Scholar 

  42. J. C. Heyraud and J. J. Métois, J. Cryst. Growth 84 (1987) 503.

    Article  Google Scholar 

  43. J. C. Heyraud and J. J. Métois, J. Cryst. Growth 50 (1980) 571.

    Google Scholar 

  44. J. C. Heyraud and J. J. Métois, Acta Metall. 28 (1980) 1789.

    Article  Google Scholar 

  45. J. C. Heyraud and J. J. Métois, Surf. Sci. 128 (1983) 334.

    Google Scholar 

  46. C. Rottman, M. Wortis, J. C. Heyraud and J. J. Métois, Phys. Rev. Lett. 52 (1984) 1009.

    Article  Google Scholar 

  47. T. Ohachi and I. Taniguchi, J. Cryst. Grwoth 65 (1983) 84.

    Article  Google Scholar 

  48. Pavlovska and D. Nenow, Surf. Sci. 27 (1971) 211.

    Article  Google Scholar 

  49. Pavlovska and D. Nenow, J. Cryst. Growth 12 (1972) 9.

    Article  Google Scholar 

  50. Pavlovska and D. Nenow, J. Cryst. Growth 39 (1977) 346.

    Article  Google Scholar 

  51. S. Sarian and H. W. Weart, Trans. Metall. Soc. AIME 233 (1965) 1990.

    Google Scholar 

  52. R. Warren, J. Mater. Sci. 3 (1968) 471.

    Article  Google Scholar 

  53. R. Warren, J. Less-Common Metals 17 (1969) 65.

    Article  Google Scholar 

  54. Y. K. Cho and D. Y. Yoon, J. Am. Ceram. Soc. submitted for publication.

  55. K.-S. Oh, J.-Y. Jun and D.-Y. Kim, J. Less-Common Metals 83 (2000) 3117.

    Google Scholar 

  56. H. S. Moon, B.-K. Kim and S.-J. L. Kang, Acta Mater. 49 (2001) 1293.

    Article  Google Scholar 

  57. J. H. Choi, “Effect of Carbon on the Grain Growth Behavior in TaC-Ni”, (M.S. Thesis, KAIST, Korea, 1997).

  58. K. B. Alexander, F. K. LeGoues, H. I. Aaronson and D. E. Laughlin, Acta Metall. 32 (1984) 2241.

    Article  Google Scholar 

  59. P. Lours, K. H. Westmacott, U. Dahmen, in “Structure and Properties of Interfaces in Materials, Materials Research Society Symposium Proceedings”, edited by W. A. T. Clark, U.Dahmen, C. L. Briant, (Materials Research Society, PA Pittsburgh, 1992) Vol. 238, p. 207.

    Google Scholar 

  60. D. Nenow, Prog. Cryst. Growth and Charact. 9 (1984) 185.

    Article  Google Scholar 

  61. J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54 (1985) 134.

    Article  PubMed  Google Scholar 

  62. J. Q. Broughton and G. H. Gilmer, J. Phys. Chem. 91 (1987) 6347.

    Article  Google Scholar 

  63. A. J. W. Moore, in “Metal Surfaces: Structure, Energetics and Kinetics”, edited by W. D. Robertson and N. A. Gjostein, (American Society for Metals, Metals Park, Ohio, 1963) p. 155.

    Google Scholar 

  64. K. T. Aust, Canadian Metallurgical Quarterly 8 (1969) 173.

    Google Scholar 

  65. H. Gleiter, Z. Metallkde 61 (1970) 283.

    Google Scholar 

  66. E. W. Hart, in “Ultrafine Grain Metals”, edited by J. J. Burke, N. L. Reed, V. Weiss, (Syracuse University Press, NY Syracuse, (1970) p. 247.

    Google Scholar 

  67. E. W. Hart, in “The Nature and Behaviour of Grain Boundaries”, edited by H. Hu (Plenum Press, NY, 1972) p. 155.

    Google Scholar 

  68. Y. Saito, in “Statistical Physics of Crystal Growth” (World Scientific, Singapore, New Jersey, London, Hong Kong, 1996) p. 1.

    Google Scholar 

  69. E. Burkner and D. Stauffer, Z. Phys. B 53 (1983) 241.

    Article  Google Scholar 

  70. M. L. Gimpl, A. D. McMaster and N. Fuschillo, in “Materials Science Research”, edited by W.W. Kriegel and H. Palmour, III (Plenum Press, New York, 1966) Vol. 3, p. 183.

    Google Scholar 

  71. N. J. Tighe and J. R. Kreglo, Jr., Ceramic Bulletin 49 (1970) 188.

    Google Scholar 

  72. N. J. Tighe, in “Ultrafine-Grain Ceramics”, edited by J. J. Burke, N. L. Reed, V. Weiss, (Syracuse University Press, NY Syracuse, (1970) p. 109.

    Google Scholar 

  73. N. J. Tighe and J. R. Kreglo, Am. Ceram. Soc. Bull. 49 (1970) 188.

    Google Scholar 

  74. K. J. Morrissey and C. B. Carter, J. Am. Ceram. Soc. 67 (1984) 292.

    Google Scholar 

  75. D. W. Susnitzky and C. B. Carter, J. Am. Ceram. Soc. 73 (1990) 2485.

    Article  Google Scholar 

  76. M. A. Gülgün, V. Putlayev and M. Rühle, J. Am. Ceram. Soc. 82 (1999) 1849.

    Google Scholar 

  77. S. Lartigue, L. Priester, F. Dupau, P. Gruffel and C. Carry, Mater. Sci. Eng. A 164 (1993) 211.

    Article  Google Scholar 

  78. T. Yamamoto, Y. Ikuhara, K. Hayashi and T. Sakuma, J. Mater. Res. 13 (1998) 3449.

    Google Scholar 

  79. T. Yamamoto, Y. Ikuhara, K. Hayashi and T. Sakuma, Mater. Sci. Forum 294–296 (1999) 247.

    Google Scholar 

  80. K. L. Merkle, Ultramicroscopy 22 (1987) 57.

    Article  Google Scholar 

  81. S. B. Lee, W. Sigle, W. Kurtz and M. Rühle, Acta Mater. 51 (2003) 975.

    Article  Google Scholar 

  82. D. Wolf and K. L. Merkle, in “Materials Interfaces: Atomic-level Structures and Properties”, edited by D. Wolf and S. Yip, (Chapman & Hall, London, 1992) p. 87.

    Google Scholar 

  83. H. Ichinose and Y. Ishida, J. de Physique 46 C4(suppl.) (1985) 39.

    Google Scholar 

  84. K. L. Merkle and D. Wolf, Phil. Mag. A 65 (1992) 513.

    Google Scholar 

  85. J.-M. Penisson, J. de Physique 49 C5(suppl.) (1988) 87.

    Google Scholar 

  86. M. J. Weins and J. J. Weins, Phil. Mag. 26 (1972) 885.

    Google Scholar 

  87. A. I. Barg, E. Rabkin and W. Gust, Acta Metall. Mater. 43 (1995) 4067.

    Article  Google Scholar 

  88. M. S. Masteller and C. L. Bauer, Acta Metall. 27 (1979) 483.

    Article  Google Scholar 

  89. M. S. Masteller and C. L. Bauer, Phil. Mag. A 38 (1978) 697.

    Google Scholar 

  90. K. H. Westmacott and D. Dahmen, in “Interface: Structure and Properties”, edited by S. Ranganathan, C. S. Pande, B. B. Rath, D. A. Smith (Trans Tech Publications, Switzerland, 1993) p. 133.

    Google Scholar 

  91. J. S. Choi and D. Y. Yoon, ISIJ International 41 (2001) 478.

    Google Scholar 

  92. S.-H. Lee, J. S. Choi and D. Y. Yoon, Z. Metallkd. 92 (2001) 655.

    Google Scholar 

  93. J. B. Koo and D. Y. Yoon, Metall. Mater. Trans. A 32 (2001) 1911.

    Google Scholar 

  94. J. B. Koo, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 33 (2002) 3803.

    Google Scholar 

  95. S. B. Lee, D. Y. Yoon and M. F. Henry, Acta Mater. 48 (2000) 3071.

    Article  Google Scholar 

  96. Y. K. Cho, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 32 (2001) 3077.

    Google Scholar 

  97. J. S. Choi and D. Y. Yoon, ISIJ International 43 (2003) 245.

    Google Scholar 

  98. C. Pichard, J. Rieu and C. Goux, Mémoires Scientifiques Rev. Métallurg, LXX (1973) 13.

    Google Scholar 

  99. M. Menyhard, B. Blum, C. J. McMahon, Jr., S. Chikwambani and J. Weertman, J. de Physique 49 C5(suppl.) (1988) 457.

    Google Scholar 

  100. M. Donald and L. M. Brown, Acta Metall. 27 (1979) 59.

    Article  Google Scholar 

  101. M. Menyhard, B. Blum and C. J. McMahon, Jr., Acta Metall. 37 (1989) 549.

    Article  Google Scholar 

  102. E. C. Urdaneta, D. E. Luzzi and C. J. McMahon, Jr., Mat. Res. Soc. Symp. Proc. 238 (1992) 201.

    Google Scholar 

  103. W.-H. Rhee, The Interface Migration and Instability Induced by Diffusional Coherency Strain in Mo-Ni Alloy, Ph.D. Thesis, KAIST, Korea, 1988.

  104. M. J. Kim, Effect of MgO Addition on Interface Structure and Grain Growth in Alumina-Anorthite, M. S. Thesis, KAIST, Korea, 2001.

  105. J. B. Koo, unpublished work.

  106. M. J. Kim, unpublished work.

  107. C. W. Park, unpublished work.

  108. J. S. Choi, “Effect of Grain Boundary Structure on Grain Growth Behavior in 316L Stainless Steel,” M. S. Thesis, KAIST, Korea, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, D.Y., Cho, Y.K. Roughening transition of grain boundaries in metals and oxides. J Mater Sci 40, 861–870 (2005). https://doi.org/10.1007/s10853-005-6502-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6502-7

Keywords

Navigation