Skip to main content
Log in

Magnetocaloric response of submicron (LaAg)MnO3 manganite obtained by Pechini method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lanthanum-based manganites containing monovalent silver cations and having grain sizes below 0.30 microns were synthesized via Pechini method, by using a moderate calcination temperature (900 °C). The incorporation of Ag+ ions into the perovskite crystal structure was verified by means of EDS, EELS, and XPS techniques. Monovalent cations provoked a rhombohedral deformation of the crystal structure, together with the formation of Mn3+–Mn4+ pairs yielding to a noticeable ferromagnetic behavior characterized by high saturation magnetization (47 Am2/kg) and a steep Curie transition at 308 K. This combination of magnetic properties enable an excellent magnetocaloric performance, with magnetic entropy variations of up to 5.6 J/kg K (for magnetic field ΔH = 5.0 T) and refrigerant capacities of up to 184 J/kg.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Franco V, Blazquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res 42:305–342

    Article  Google Scholar 

  2. Phan Manh-Huong, Seong-Cho Yu (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308:325–340

    Article  Google Scholar 

  3. Coey JMD, Viret V, Von Molnar S (1999) Mixed-valence manganites. Adv Phys 48:167–293

    Article  Google Scholar 

  4. Tishin AM, Spichkin YE (2003) The magnetocaloric effect and its applications. Institute of Physics, Bristol-Philadelphia

    Book  Google Scholar 

  5. Liu SP, Tang GD, Li ZZ, Ji DH, Li YF, Chen W, Hou DL (2011) Structural and magnetic properties in the self-doped perovskite manganites with nominal composition La0.7Sr0.3−xMnO3−δ. Phys B 406:869–876

    Article  Google Scholar 

  6. Bejar M, Dhahri R, El Halouani F, Dhahri E (2006) Magnetocaloric effect at room temperature in powder of La0.5(CaSr)0.5MnO3. J Alloys Compd 414:31–35

    Article  Google Scholar 

  7. Liu SP, Tang GD, Li ZZ, Qi WH, Ji DH, Li YF, Chen W, Hou DL (2011) Study of the structure, magnetic properties and free energy of the three phase composites La0.7−y−zSr0.3−xMn1−δ/3O3−δ/(La2O3)y/2/(La(OH)3)z. J Alloys Compd 509:2320–2325

    Article  Google Scholar 

  8. Aliev AM, Gamzatov AG, Batdalov AB, Mankevich AS, Korkasov IE (2011) Structure and magnetocaloric properties of La1−xKxMnO3 manganites. Phys B 406:885–889

    Article  Google Scholar 

  9. Tovstolytkin AI, Tsmots VM, Pankiv LI (2010) Magnetic and magnetoresistive properties of sodium-substituted lanthanum manganites. Low Temp Phys 36:220–2225

    Article  Google Scholar 

  10. Koubaa M, Regaieg Y, Cheikhrouhou Koubaa W, Cheikhrouhou A, Ammar-Merah S, Herbst F (2011) Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site. J Magn Magn Mater 323:252–257

    Article  Google Scholar 

  11. Bellakki MB, Shivakumara C, Vasanthacharya NY, Prakash AS (2010) Rapid synthesis of room temperature ferromagnetic Ag-doped LaMnO3 perovskite phases by the solution combustion method. Mater Res Bull 45:1685–1691

    Article  Google Scholar 

  12. The Hien N, Phu Thuy N (2002) Preparation and magneto-caloric effect of La1−xAgxMnO3 (x = 0.10 − 0.30) perovskite compounds. Phys B 319:168–173

    Article  Google Scholar 

  13. Irmak AE, Coskun A, Tasarkuyu E, Akturk S, Unlu G, Samancioglu Y, Sarikurkcu C, Kaynar BM, Yucel A (2010) The influence of the sintering temperature on the structural and the magnetic properties of doped manganites: La0.95Ag0.05MnO3 and La0.75Ag0.25MnO3. J Magn Magn Mater 322:945–951

    Article  Google Scholar 

  14. Tang T, Gu KM, Cao QQ, Wang DH, Zhang SY, Du YW (2000) Magnetocaloric properties of Ag-substituted perovskite-type manganites. J Magn Magn Mater 222:110–114

    Article  Google Scholar 

  15. Amano ME, Betancourt I, Sánchez-Llamazares JL, Huerta L, Sánchez-Valdés CF (2014) Mixed-valence La0.80(Ag1−xSrx)0.20MnO3 manganites with magnetocaloric effect. J Mater Sci 49:633–641

    Article  Google Scholar 

  16. Pechini MP, July 11 1967 U.S. Patent No. 3330697

  17. Galceran M, Pujol MC, Aguilo M, Diaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE (WO4)2(RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88

    Article  Google Scholar 

  18. Mariappan CR, Galven C, Crosnier-Lopez MP, Le Berre F, Bohnke O (2006) Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Solid State Chem 179:450–456

    Article  Google Scholar 

  19. Brück E, Tegus O, Li XW, de Boer FR, Buschow KHJ (2003) Magnetic refrigeration: towards room-temperature applications. Phys B 327:431

    Article  Google Scholar 

  20. Jacob KT, Kumar A, Rajitha G, Waseda Y (2011) Thermodynamic data for Mn3O4, Mn2O3 and MnO2. High Temp Mater Process 30:459–472

    Article  Google Scholar 

  21. Loomer DB, Al TA, Weaver L, Cogswell S (2007) Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. Am Mineral 92:72–79

    Article  Google Scholar 

  22. Shih SJ, Sharghi-Moshtaghin R, De Guire MR, Goettler R, Xing Z, Liu Z, Heuer AH (2011) Mn valence determination for lanthanum strontium manganite solid oxide fuel cell cathodes. J Electrochem Soc 158:B1276–B1280

    Article  Google Scholar 

  23. Varela M, Oxley MP, Luo W, Tao J, Watanabe M, Lupini AR, Pantelides ST, Pennycook SJ (2009) Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79:085117

    Article  Google Scholar 

  24. Kucharczyk B, Tylus W (2008) Partial substitution of lanthanum with silver in the LaMnO3 perovskite: effect of the modification on the activity on monolithic catalysts in the reactions of methane and carbon oxide oxidation. Appl Catal A Gen 335:28–36

    Article  Google Scholar 

  25. Banerjee BK (1964) On a generalized approach to first and second order magnetic transitions. Phys Lett 12:16–17

    Article  Google Scholar 

  26. Dankov SY, Tishin AM, Pecharsky VK, Gschneidner KA (1998) Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B 57:3478–3490

    Article  Google Scholar 

  27. Attfield JP (1998) A simple approach to lattice effects in conducting perovskite-type oxides. Chem Mater 10:3239–3248

    Article  Google Scholar 

  28. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–761

    Article  Google Scholar 

  29. Zener C (1951) Interaction between the d shells in the transition metals. Phys Rev B 81:440–445

    Article  Google Scholar 

  30. Amano Patiño ME (2011) Synthesis, structure and magnetic properties of La(Ag, Sr)MnO3 manganites. Faculty of Chemistry, National Autonomoues University of Mexico, Thesis

    Google Scholar 

Download references

Acknowledgments

I. Betancourt acknowledges financial support from PASPA-UNAM, Mexico, and CONACYT Mexico, for his sabbatical leave. Electron transmission microscopy work at UTSA was supported by the NIH RCMI Nanotechnology and Human Health Core (G12MD007591). Support received from Laboratorio Nacional de Investigaciones en Nanociencias y Nanotecnología (LINAN, IPICYT) is kindly acknowledged. The valuable technical assistance by L. Huerta-Arcos, from IIM-UNAM, Mexico, is also recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Betancourt.

Additional information

I. Betancourt is at sabbatical leave from Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, México.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, M.E., Betancourt, I., Arellano-Jimenez, M.J. et al. Magnetocaloric response of submicron (LaAg)MnO3 manganite obtained by Pechini method. J Sol-Gel Sci Technol 78, 159–165 (2016). https://doi.org/10.1007/s10971-015-3911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3911-1

Keywords

Navigation