Skip to main content
Log in

Diffuse lung disease classification based on texture features and weighted extreme learning machine

  • 1166: Advances of machine learning in data analytics and visual information processing
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Diffuse lung diseases are a group of chronic disorders that affect the lungs. The highly prevalent lung patterns associated with diffuse lung diseases are emphysema, fibrosis, ground-glass opacity, and micro-nodules. For diffuse lung classification problem, TALISMAN (Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce) is one of the widely studied dataset in the literature. It is observed in the dataset that there exists sample imbalance among different tissue patterns. To address the sample imbalance in the data weighted extreme learning machine classifier is employed in this work. To overcome the intra-class and inter-class variation among the diffuse lung patterns features are extracted using the modified intuitionistic local binary pattern along with Gabor filter bank and grey level co-occurrence matrix. These combined texture features are then used to train the weighted extreme learning machine to classify the diffuse lung patterns. The performance of the proposed approach is compared with the existing works in the literature. The comparison results indicate better performance of the proposed approach for diffuse lung classification with sample imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ansari MD, Ghrera SP (2018) Intuitionistic fuzzy local binary pattern for features extraction. Int J Inf Commun Technol 13(1):83–98

    Google Scholar 

  2. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216

    Article  Google Scholar 

  3. Bağcı U, Bray M, Caban J, Yao J, Mollura DJ (2012) Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph 36(1):72–84

    Article  Google Scholar 

  4. Bermejo-Peláez D, Ash SY, Washko GR, Estépar RSJ, Ledesma-Carbayo MJ (2020) Classification of interstitial lung abnormality patterns with an ensemble of deep convolutional neural networks. Sci Rep 10(1):1–15

    Article  Google Scholar 

  5. Bustince H, Kacprzyk J, Mohedano V (2000) Intuitionistic fuzzy generators application to intuitionistic fuzzy complementation. Fuzzy Sets Syst 114 (3):485–504

    Article  MathSciNet  Google Scholar 

  6. Dalpiaz G, Maffessanti M (2013) Diffuse lung diseases. In: Geriatric imaging. Springer, pp 365–388

  7. Dash JK, Mukhopadhyay S, Gupta RD (2017) Multiple classifier system using classification confidence for texture classification. Multimed Tools Appl 76 (2):2535–2556

    Article  Google Scholar 

  8. Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti PA, Müller H (2012) Building a reference multimedia database for interstitial lung diseases. Comput Med Imaging Graph 36(3):227–238

    Article  Google Scholar 

  9. Depeursinge A, Van de Ville D, Platon A, Geissbuhler A, Poletti PA, Muller H (2012) Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames. IEEE Trans Inf Technol Biomed 16(4):665–675

    Article  Google Scholar 

  10. Gao M, Bagci U, Lu L, Wu A, Buty M, Shin HC, Roth H, Papadakis GZ, Depeursinge A, Summers RM et al (2018) Holistic classification of ct attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng: Imaging Visual 6(1):1–6

    Google Scholar 

  11. Guo W, Xu Z, Zhang H (2019) Interstitial lung disease classification using improved densenet. Multimed Tools Appl 78(21):30615–30626

    Article  Google Scholar 

  12. Han J, Ma KK (2007) Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis Comput 25(9):1474–1481

    Article  Google Scholar 

  13. Haralick RM, Shanmugam K et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610–621

  14. Huang S, Lee F, Miao R, Si Q, Lu C, Chen Q (2020) A deep convolutional neural network architecture for interstitial lung disease pattern classification. Med Biol Eng Comput 58(4):725–737

    Article  Google Scholar 

  15. Joyseeree R, Müller H, Depeursinge A (2018) Rotation-covariant tissue analysis for interstitial lung diseases using learned steerable filters: performance evaluation and relevance for diagnostic aid. Comput Med Imaging Graph 64:1–11

    Article  Google Scholar 

  16. Joyseeree R, Otálora S, Müller H, Depeursinge A (2019) Fusing learned representations from riesz filters and deep cnn for lung tissue classification. Med Image Anal 56:172–183

    Article  Google Scholar 

  17. Li L, Sun R, Cai S, Zhao K, Zhang Q (2019) A review of improved extreme learning machine methods for data stream classification. Multimed Tools Appl 78(23):33375–33400

    Article  Google Scholar 

  18. Naresh Y, Nagendraswamy H (2016) Classification of medicinal plants: an approach using modified lbp with symbolic representation. Neurocomputing 173:1789–1797

    Article  Google Scholar 

  19. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  20. Richhariya B, Tanveer M (2018) A robust fuzzy least squares twin support vector machine for class imbalance learning. Appl Soft Comput 71:418–432

    Article  Google Scholar 

  21. Richhariya B, Tanveer M (2020) A reduced universum twin support vector machine for class imbalance learning. Pattern Recognit 102:107–150

    Article  Google Scholar 

  22. Ross TJ (2005) Fuzzy logic with engineering applications. Wiley, New York

    Google Scholar 

  23. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  24. Sluimer I, Schilham A, Prokop M, Van Ginneken B (2006) Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging 25(4):385–405

    Article  Google Scholar 

  25. Song Y, Cai W, Zhou Y, Feng DD (2013) Feature-based image patch approximation for lung tissue classification. IEEE Trans Med Imaging 32 (4):797–808

    Article  Google Scholar 

  26. Sorensen L, Shaker SB, De Bruijne M (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29 (2):559–569

    Article  Google Scholar 

  27. Sukanya Doddavarapu V, Kande GB, Prabhakara Rao B (2020) Differential diagnosis of interstitial lung diseases using deep learning networks. Imaging Sci J 1–9

  28. Uppaluri R, Hoffman EA, Sonka M, Hartley PG, Hunninghake GW, McLennan G (1999) Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654

    Article  Google Scholar 

  29. van Ginneken B, ter Haar Romeny BM (2003) Multi-scale texture classification from generalized locally orderless images. Pattern Recognit 36(4):899–911

    Article  Google Scholar 

  30. Vasconcelos V, Barroso J, Marques L, Silvestre Silva J (2015) Enhanced classification of interstitial lung disease patterns in hrct images using differential lacunarity. BioMed Res Int 2015:1–9

    Article  Google Scholar 

  31. Wang Q, Zheng Y, Yang G, Jin W, Chen X, Yin Y (2018) Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J Biomed Health Inform 22(1):184–195

    Article  Google Scholar 

  32. Xu Z, Liu J, Luo X, Yang Z, Zhang Y, Yuan P, Tang Y, Zhang T (2019) Software defect prediction based on kernel pca and weighted extreme learning machine. Inf Softw Technol 106:182–200

    Article  Google Scholar 

  33. Zhang J, Wang H, Ren Y (2019) Robust tracking via weighted online extreme learning machine. Multimed Tools Appl 78(21):30723–30747

    Article  Google Scholar 

  34. Zong W, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Mahanand.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, S., Mahanand, B.S. & Vinod, D.S. Diffuse lung disease classification based on texture features and weighted extreme learning machine. Multimed Tools Appl 80, 35467–35479 (2021). https://doi.org/10.1007/s11042-020-10469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10469-5

Keywords

Navigation