Skip to main content
Log in

Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35–125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain–chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajisawa A.J. (1998) Dissolution of silk fibroin with calcium chloride/ethanol aqueous solution. J. Sericult. Sci. Japan 67(2):91–97

    CAS  Google Scholar 

  • Altman G.H., Diaz F., Jakuba C., Calabro T., Horan R.H., Chen J., Lu H., Richmond J., Kaplan D.L. (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  Google Scholar 

  • Demura M., Asakura T., Nakamura E., Tamura H. (1989) Immobilization of peroxidase with a Bombyx mori silk fibroin membrane and its applicaton to biophotosensors. J. Biotechnol. 10:113–120

    Article  CAS  Google Scholar 

  • Habeeb A.F.S.A. (1996) Determination of free amino group in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 11:328–336

    Google Scholar 

  • Hermans P.H., Weidinger A. (1948) Quantitative X-Ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Phys. 19(5):491–506

    Article  CAS  Google Scholar 

  • Inoue S., Matsunaga Y., Iwane H. (1986) Entrapment of phenyalanine ammonia-lyase in silk fibroin for protection from proteolytic attack. Biochem. Biophys. Res. Commun. 141:165–170

    Article  CAS  Google Scholar 

  • Ishida M., Asakura T., Yokoi M., Saito H. (1990) Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR. Macromolecules 23:88–94

    Article  CAS  Google Scholar 

  • Jin H.J., Kaplan D.L. (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  CAS  Google Scholar 

  • Kuzuhara K., Asakura T., Tomoda R., Matsunaga T. (1987) Use of silk fibroin for enzyme membrane. J. Biotechnol. 5:199–207

    Article  CAS  Google Scholar 

  • Ladokhin A.S., Meyers R.A. (2000) Encyclopedia of Anal Chem. John Wiley & Sons Ltd., Chichester, pp 5762–5779

    Google Scholar 

  • Li M., Masayo O., Minoura N. (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24:357–365

    Article  CAS  Google Scholar 

  • Li M., Wu Z., Zhang C.J. (2001) Study on porous silk fibroin materials II Preparation and characteristics of spongy porous silk fibroin materials. Appl. Polym. Sci. 79:2192–2199

    Article  Google Scholar 

  • Lin W., Coombes A.G.A, Davies M.C., Davis S.S., Illum L.J. (1993) Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J. Drug Target. 1:237–243

    CAS  Google Scholar 

  • Mathur A.B., Tonelli A., Rathke T., Hudson S. (1997) Dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate-methanol solution and the regeneration of films. Biopolymers 42(1):61–74

    Article  CAS  Google Scholar 

  • Matsumoto K., Uejima H.J. (1997) Regenerated protein fibers. I. Research and development of a novel solvent for silk fibroin. J. Polym. Sci. A: Polym. Chem. 35(10):1949–1954

    Article  CAS  Google Scholar 

  • Miller J.N. (1979) Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. 16:203–209

    CAS  Google Scholar 

  • Minoura N., Tsukada M., (1990) Coagulation of silk fibroin. Japan Patent JP02–084503

  • Mita K., Ichimura S., James T.C. (1994) Highly repetitive structure and its organization of the silk fibroin gene. J. Mol. Evol. 38:583–592

    Article  CAS  Google Scholar 

  • Monti P., Taddei P., Freddi G., Ohgo K., Asakura T. (2003) Vibrational, 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly (alanine–glycine) as model for silk Bombyx mori fibroin. Biopolymers 72:329–338

    Article  CAS  Google Scholar 

  • Mori H., Tsukada T. (2000) New silk protein: modification of silk protein by gene engineering for production of biomaterial. J. Biotechnol. 74(2):95–103

    CAS  Google Scholar 

  • Müller G.M., Leuenberger H., Kissel T. (1996) Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm. Res. 13:32–37

    Article  Google Scholar 

  • Nakayama H. (1981) Immobilized protease and its preparation. Japan Patent JP56015687

  • Nam J., Park Y.H.J. (2001) Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight. J. Appl. Polym. Sci. 81(12):3008–3021

    Article  CAS  Google Scholar 

  • Nazarov R., Jin H.J., Kaplan D.L. (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  Google Scholar 

  • Otoi K., Horikawa Y. (1980) Process for producing a fine powder of silk fibroin. US Patent 4, 233, 212

    Google Scholar 

  • Saito H., Tabeta R., Asakura T., Iwanaga Y., Shoji A., Ozaki T., Ando I. (1984) High-resolution 13C NMR study of silk fibroin in the solid state by the cross-polarization-magic angle spinning method Conformational characterization of silk I and silk II type forms of Bombyx mori fibroin by the conformation-dependent 13C chemical shifts. Macromolecules. 17:1405–1412

    Article  CAS  Google Scholar 

  • Sakabe H., Ito H., Miyamoto T., Noishiki Y., Ha W.S. (1989)In Vivo blood compatibility of regenerated silk fibroin. SEN-I GAKKAISHI 45:487–490

    CAS  Google Scholar 

  • Sano M., Mikami S., Sasaki N., Kusamoto N., Fukatsu F., Ubara A., Yasue T., Ohyama S. (1998) Process for producing fine silk fibroin powder. European Patent EP0875523A1

  • Siamwiza M.N., Lord R.C., Chen M.C., Takamatsu T., Harada I., Matsuura H., Shimanouchi T. (1975) Interpretation of the doublet at 850 and 830 cm−1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14(22):4870–4876

    Article  CAS  Google Scholar 

  • Snyder S.L., Sobocinski P.Z. (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64(1):284–288

    Article  CAS  Google Scholar 

  • Tajima M., Tanaka T. (1994) Silk powder and its production, coating agent using silk powder and its production, and cleaning finishing sizing agent using silk powder and its use. Japan Patent JP06–306772

  • Tamada Y. (2005) New process to form a silk fibroin porous 3D structure. Biomacromolecules 6:3100–3106

    Article  CAS  Google Scholar 

  • Toshio U., Kazuo K., Hiroyuki A. (2000) Properties of silk pigment and it’s application for cosmetics. Fragrance J. 28(4):15–21

    Google Scholar 

  • Trabbic K.A., Yager P. (1998) Comparative structural characterization of naturally- and synthetically-spun fibers of Bombyx mori fibroin. Macromolecules 31:462–471

    Article  CAS  Google Scholar 

  • Tsubouchi K. (1998) Process for preparing fine powder of silk fibroin. US Patent. US 5, 853, 764

  • Tsukada M., Gotoh Y., Nagura M., Minoua N., Kasai N., Freddi G.J. (1994) Structural change of silk fibroin membranes induced by immersion in methanol aqueous solutions. J. Polym. Sci. Polym. Phys. Ed. 32:961–968

    Article  CAS  Google Scholar 

  • Vollrath F., Knight D.P. (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  Google Scholar 

  • Weber C., Coester C., Kreuter J., Langer K. (2000) Desolvation process and surface characteristics of protein nanoparticles. Int. J. Pharm. 194:91–102

    Article  CAS  Google Scholar 

  • Yamada H., Nakao H., Takasu Y., Tsubouchi K. (2001) Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater. Sci. Eng. C 14:41–46

    Article  Google Scholar 

  • Yamaguchi K., Kikuchi Y., Takagi T., Kikuchi A., Oyama F., Shimura K., Mizuno S. (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. Mol. Biol. 210:127–139

    Article  CAS  Google Scholar 

  • Zhang Y.Q. (1998) Natural silk fibroin as a support for enzyme immobilization. Biotechnol. Adv. 16:961–971

    Article  CAS  Google Scholar 

  • Zhang Y.Q., Shen W.D., Gu R.A., Zhu J., Xue R.Y. (1998)a Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Anal. Chim. Acta 369:123–128

    Article  CAS  Google Scholar 

  • Zhang Y.Q., Shen W.D., Mao J.P. (2003) Culture medium using sericin as nitrogen source. China Patent CN1443840

  • Zhang Y.Q., Zhu J., Gu R.A. (1998)b Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane. Appl. Biochem. Biotechnol. 75:215–233

    CAS  Google Scholar 

  • Zhou C.Z., Confalonier F., Medina N., Zivanovic Y., Esnault C., Yang T., Jacquet M., Janin J., Duguet M., Perasso R., Li Z.G. (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28:2413–2419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Associate Professor Wang-Fang Shen for her help in the preparation of this manuscript. This work was partly supported by the National Basic Research Program of China (2005CB121000), the University Natural Science Funds of Jiangsu Province (04KJB180122) and Natural Science Funds of Jiangsu Province (BK2006053), P. R. China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YQ., Shen, WD., Xiang, RL. et al. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9, 885–900 (2007). https://doi.org/10.1007/s11051-006-9162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9162-x

Keywords

Navigation