Skip to main content
Log in

Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afshar A, Kazemi H, Saadatpour M (2011) Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): application to Karkheh Reservoir, Iran. Water Resour Manag 25:2613–2632. doi:10.1007/s11269-011-9829-7

    Article  Google Scholar 

  • Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality modeling using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour Manag 27:1931–1947. doi:10.1007/s11269-013-0263-x

    Article  Google Scholar 

  • Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13:885–900. doi:10.1029/WR013i006p00885

    Article  Google Scholar 

  • Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems management. Water Resour Manag 20:133–149. doi:10.1007/s11269-006-4635-3

    Article  Google Scholar 

  • Artita KS, Kaini P, Nicklow JW (2013) Examining the possibilities: generating alternative watershed-scale BMP designs with evolutionary algorithms. Water Resour Manag 27:3849–3863. doi:10.1007/s11269-013-0375-3

    Article  Google Scholar 

  • Barlow E, Tanyimboh TT (2014) Multiobjective memetic algorithm applied to the optimisation of water distribution systems. Water Resour Manag 28:2229–2242. doi:10.1007/s11269-014-0608-0

    Article  Google Scholar 

  • Chung G, Lansey K (2008) Application of the shuffled frog leaping algorithm for the optimization of a general large-scale water supply system. Water Resour Manag 23:797–823. doi:10.1007/s11269-008-9300-6

    Article  Google Scholar 

  • Elbeltagi E, Hegazy T, Grierson D (2007) A modified shuffled frog-leaping optimization algorithm: applications to project management. Struct Infrastruct Eng 3:53–60. doi:10.1080/15732470500254535

    Article  Google Scholar 

  • Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129:210–225. doi:10.1061/(ASCE)0733-9496(2003)129:3(210)

    Article  Google Scholar 

  • Fujiwara O, Khang DB (1990) A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour Res 26:539–549. doi:10.1029/WR026i004p00539

    Article  Google Scholar 

  • Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–277. doi:10.1080/03052150500467430

    Article  Google Scholar 

  • Gomes H, de Bezerra STM, de Carvalho P, Salvino M (2009) Optimal dimensioning model of water distribution systems. Water SA 35:421–431. doi:10.4314/wsa.v35i4

    Google Scholar 

  • Haddad OB, Tabari MMR, Fallah-Mehdipour E, Mariño MA (2013) Groundwater model calibration by meta-heuristic algorithms. Water Resour Manag 27:2515–2529. doi:10.1007/s11269-013-0300-9

    Article  Google Scholar 

  • Iglesias-Rey PL, Martínez-Solano FJ, Mora-Meliá D, Martínez-Solano PD (2014) BBLAWN: a combined use of best management practices and an optimization model based on a pseudo-genetic algorithm. Procedia Eng 89:29–36. doi:10.1016/j.proeng.2014.11.156

  • Jin Y-X, Cheng H-Z, Yan J, Zhang L (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr Power Syst Res 77:227–233. doi:10.1016/j.epsr.2006.02.016

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  • Kim JH, Kim TG, Kim JH, Yoon YN (1994) A study on the pipe network system design using non-linear programming. J Korean Water Resour Assoc 27:59–67

    Google Scholar 

  • Kollat JB, Reed PM (2006) Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv Water Resour 29:792–807. doi:10.1016/j.advwatres.2005.07.010

    Article  Google Scholar 

  • Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of a complex reservoir system in tunisia. Water Resour Manag 25:2387–2404. doi:10.1007/s11269-011-9814-1

    Article  Google Scholar 

  • Marchi A, Dandy G, Wilkins A, Rohrlach H (2014) Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. doi: 10.1061/(ASCE)WR.1943-5452.0000321

  • Mora-Melia D, Iglesias-Rey P, Fuertes-Miquel V, Martinez-Solano F (2010) Application of the harmony search algorithm to water distribution networks design. Taylor & Francis Group. pp 265–271. doi: 10.1201/b10999-67

  • Mora-Melia D, Iglesias-Rey PL, Martinez-Solano FJ, Fuertes-Miquel VS (2013) Design of water distribution networks using a pseudo-genetic algorithm and sensitivity of genetic operators. Water Resour Manag 27:4149–4162. doi:10.1007/s11269-013-0400-6

    Article  Google Scholar 

  • Ostadrahimi L, Mariño MA, Afshar A (2011) Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26:407–427. doi:10.1007/s11269-011-9924-9

    Article  Google Scholar 

  • Rossman LA (2000) EPANET 2.0 User’s manual. EPA/600/R-00/057, Water Supply and Water Resources Div., National Risk Management Research Laboratory, Cincinnatti (USA)

  • Savic DA, Walters GA (1997) Genetic algorithms for least-cost design of water distribution networks. J Water Resour Plan Manag 123:67–77. doi:10.1061/(ASCE)0733-9496(1997)123:2(67)

    Article  Google Scholar 

  • Schaake J, Lai FH (1969) Linear programming and dynamic programming application to water distribution network design. M.I.T. Hydrodynamics Laboratory, Cambridge

    Google Scholar 

  • Wang Q, Guidolin M, Savic D, Kapelan Z (2014) Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J Water Resour Plan Manag 04014060. doi: 10.1061/(ASCE)WR.1943-5452.0000460

Download references

Acknowledgments

This research study was funded by the Chilean CONICYT grant under the Program FONDECYT Initiation for research in 2013 and 2014 (Project folio 11130666 and 11140128, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mora-Melia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Melia, D., Iglesias-Rey, P.L., Martinez-Solano, F.J. et al. Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resour Manage 29, 4817–4831 (2015). https://doi.org/10.1007/s11269-015-1092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1092-x

Keywords

Navigation