Skip to main content
Log in

A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this investigation was to develop an innovative methodology for life and reliability prediction of hot-section components in advanced turbopropulsion systems. A set of generic microstructure-based time-dependent crack growth (TDCG) models was developed and used to assess the sources of material variability due to microstructure and material parameters such as grain size, activation energy, and crack growth threshold for TDCG. A comparison of model predictions and experimental data obtained in air and in vacuum suggests that oxidation is responsible for higher crack growth rates at high temperatures, low frequencies, and long dwell times, but oxidation can also induce higher crack growth thresholds (ΔK th or K th) under certain conditions. Using the enhanced risk analysis tool and material constants calibrated to IN 718 data, the effect of TDCG on the risk of fracture in turboengine components was demonstrated for a generic rotor design and a realistic mission profile using the DARWIN® probabilistic life-prediction code. The results of this investigation confirmed that TDCG and cycle-dependent crack growth in IN 718 can be treated by a simple summation of the crack increments over a mission. For the temperatures considered, TDCG in IN 718 can be considered as a K-controlled or a diffusion-controlled oxidation-induced degradation process. This methodology provides a pathway for evaluating microstructural effects on multiple damage modes in hot-section components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K.S. Chan, M.P. Enright, J.P. Moody, B. Hocking, and S.H.K. Fitch, J. Eng. Gas Turbine Power, 2012, vol. 134, p. 122501.

  2. DARWIN® User’s Guide. Southwest Research Institute, 2011, San Antonio, TX.

  3. M. Prager and G. Sines, ASME J. Basic Eng., Vol. 225, 1971, pp. 225-30.

    Article  Google Scholar 

  4. J.M. Larson and S. Floreen, Metall. Trans. A, Vol. 8A, 1977, pp. 51-55.

    Article  Google Scholar 

  5. Material data provided through direct telecommunications and in Probabilistic Design for Rotor Integrity (PDRI) Interim Report 9, Southwest Research Institute, March 4, 2010. The tests were performed by PW and funded under FAA Grant 05-G-005.

  6. J.P. Pedron and A. Pineau, Mater. Sci. Eng., Vol. 56, 1982, pp. 143-56.

    Article  Google Scholar 

  7. M. Gao, D.J. Dwyer, and R.P. Wei: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 581–92.

  8. R.P. Wei and Z. Huang, Mater. Sci. Eng., Vol. A336, 2002, pp. 209-214.

    Article  Google Scholar 

  9. D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79.

  10. S. Floreen and R. Raj: Flow and Fracture at Elevated Temperatures, ASM, Materials Park, 1983, pp. 383–404.

  11. K. Sadananda and P. Shahinian: Mater. Sci., Eng., 1980, vol. 43, pp. 159–68.

  12. S. Floreen, Metall. Trans. A, Vol. 17A, 1975, pp. 1741-49.

    Article  Google Scholar 

  13. P.F. Browning: cited in Ref. [24] by D.A. Woodford: Energy Mater., 2006, vol. 1 (1), pp. 59–79.

  14. K. Sadananda and P. Shahinian: Creep-Fatigue Environment Interactions, R.M. Pelloux and N.S. Stoloff, eds., TMS-AIME, Warrendale, PA, 1979, pp. 86–111.

  15. K. Sadananda and P. Shahinian, J. Eng. Mater. Technol., Vol. 100, 1978, pp. 381-87.

    Article  Google Scholar 

  16. P. Valerio, M. Gao, and R.P. Wei, Scripta Metall. Mater., Vol. 30, 1994, pp. 1269-74.

    Article  Google Scholar 

  17. X. Liu, B. Kang, W. Carpenter and E. Barbero, J. Mater. Sci., Vol. 39, 2004, pp. 1967-73.

    Article  Google Scholar 

  18. I. Gurrappa, S. Weinbruch, D. Naumenko, and W.J. Quadakkers, Mater. Corros., Vol. 51, 2000, pp. 224-35.

    Article  Google Scholar 

  19. R.M. McMeeking and A.G. Evans, J. Am. Ceram. Soc., Vol. 65, 1982, pp. 242-46.

    Article  Google Scholar 

  20. H. Ghonem, T. Nicholas, and A. Pineau, Fatigue Fract. Eng. Mater. Struct., Vol. 16, 1993, pp. 577–90.

    Article  Google Scholar 

  21. M. Olszta, D. Schreiber, L. Thomas, and S. Bruemmer: Adv. Mater. Process., 2012, vol. 170 (4), pp. 17–21.

  22. R. Cozar and A. Pineay, Metall. Trans., Vol. 4, 1973, pp. 47-59.

    Article  Google Scholar 

  23. K. Kusabiraki, H. Komatsu, and S. Ikeuchi, Metall. Mater. Trans. A, Vol. 29A, 1998, pp. 1169–74.

    Article  Google Scholar 

  24. J.C. Zhao, V. Ravikumar, and A.M. Beltran, Metall. Mater. Trans. A, Vol. 32A, 2001, pp. 1271–82.

    Article  Google Scholar 

  25. T. Sourmail, Mater. Sci. Technol.,, Vol. 17, 2001, pp. 1-14.

    Google Scholar 

  26. T.M. Pollock and S. Tin, J. Propuls. Power, Vol. 22, 2006, pp. 361-74.

    Article  Google Scholar 

  27. J. Laigo, F. Tancret, R. Le Gall, and J. Furtado, Adv. Mater. Res., Vols. 15-17, 2007, pp. 702-07.

    Article  Google Scholar 

  28. W. Acchar and C. A. Cairo, Mater. Res., Vol. 9, 2006, pp. 171-74.

    Google Scholar 

  29. K. Koji, N. Yokotani, and Y. Umakoshi, Mater. Sci. Forum, Vol. 512, 2006, pp. 67-72.

    Article  Google Scholar 

  30. K. Hirota, K. Mitani, M. Yoshinak, and O. Yamaguchi, Mater. Sci. Eng. A, Vol. 399, 2005, pp. 154-60.

    Article  Google Scholar 

  31. G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, and J.J. McGee, Weld. J., Vol. 87, 2008, pp. 31s-43s.

    Google Scholar 

  32. J.D. Rigney and J.J. Lewandowski, Mater. Sci. Eng. A, Vol. 149, 1992, pp. 143-51.

    Article  Google Scholar 

  33. S. Musikant: What Every Engineer Should Know About Ceramics, chap. 6, Marcel-Dekker, New York, NY, 1991, pp. 99–122.

  34. T. Chudoba, N. Schwarzer, and F. Richter, Surf. Coat. Technol., Vol. 127, 2000, pp. 9–17.

    Article  Google Scholar 

  35. D. Tromans and J.A. Meech, Miner. Eng., Vol. 15, 2002, pp. 1027-41.

    Article  Google Scholar 

  36. J.A. Crawford, J. Appl. Phys., Vol. 35, 1964, pp. 2413-18.

    Article  Google Scholar 

  37. P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr., Vol. 20, 1987, pp. 79-83.

    Article  Google Scholar 

  38. H. Berger, H. Tang, and F. Levy, J. Cryst. Growth, Vol. 130, 1993, pp. 108-12.

    Article  Google Scholar 

  39. C. Yan and D. Yue, Adv. Mater., Vol. 20, 2008, pp. 1055-58.

    Article  Google Scholar 

  40. D.R. Lide: CRC Handbook of Chemistry and Physics, 79th ed., CRC, Boca Raton, FL, 1998/1999.

  41. T. Bredow and A.R. Gerson, Phys. Rev. B, Vol. 61, 2000, pp. 5194-201.

    Article  Google Scholar 

  42. X.S. Du, S. Hak, T. Hibma, O.C. Rogojanu, and B. Struth, J. Cryst. Growth, Vol. 293, 2006, pp. 228-32.

    Article  Google Scholar 

  43. R. Guillament, J. Lopitaux, B. Hannoyer, and M. Lenglet: J. Phys. IV, 1993, vol. 3, pp. 349–56.

  44. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976, p. 8.

  45. W.J. Mills and L.D. Blackhurn, J. Eng. Mater. Technol., Vol. 110, 1988, pp. 286-97.

    Article  Google Scholar 

  46. Y.H. Qi and P. Bruckel, and P. Lours, J. Mater. Sci., Vol. 22, 2003, pp. 371-74.

    Google Scholar 

  47. L.A. James and W.J. Mills, Eng. Fract. Mech., Vol. 22, 1985, pp. 797-817.

    Article  Google Scholar 

  48. J.L. Yuen, C.G. Schmidt, and P. Roy, Fatigue Fract. Eng. Mater. Struct., Vol. 8, 1985, pp. 65-76.

    Article  Google Scholar 

  49. S. Suresh and R.O. Ritchie, Scripta Metall., 1983, Vol. 17, pp. 575-80.

    Article  Google Scholar 

  50. S.J. Hudak, Jr. and R.A. Page, Corrosion, 1983, Vol. 39, pp. 285-90.

    Article  Google Scholar 

  51. J.L. Yuen, P. Roy, and W.D. Nix, Metall. Trans. A., Vol. 15A, 1984, pp. 1769-75.

    Article  Google Scholar 

  52. S.S. Kim. S.J. Choe, and K.S. Shin, Met. Mater., Vol. 4, No. 1, 1998, pp. 15-23.

    Article  Google Scholar 

  53. Wei, R.P., and Landes, J.D., Mater. Res. Stand., Vol. 44 (46), July 1969, pp. 25-27.

    Google Scholar 

  54. R.H. Van Stone and D.C. Slavik: Fatigue and Fracture Mechanics: 31st Volume, ASTM STP 1389, G.R. Halford and J.P. Gallagher, eds., ASTM, West Conshohocken, PA, 2000, pp. 405–26.

  55. P.C. Paris and F. Erdogan: Trans. ASME J. Basic Eng. Ser. D, 1963, vol. 85 (3), pp. 528–533.

  56. R.W. Hayes, Metall. and Mater. Transactions A, Vol. 39A, 2008, pp. 2596-2606.

    Article  Google Scholar 

  57. M.J. Starink and P.A.S. Reed, Mater. Sci. Eng. A, Vol. 491, 2008, pp. 279–89.

    Article  Google Scholar 

  58. T. Weerasooriya: AFWAL-TR-4038, University of Dayton, Dayton, OH, June 1987.

  59. K.-M. Chang, M.F. Henry, and M.G. Benz: JOM, 1990, vol. 42 (12), pp. 29–35.

  60. S.S. Kim, S.J. Choe, and K.S. Shin: Met. Mater., Vol. 4, 1998, pp. 1-13.

    Article  Google Scholar 

  61. K.O. Findley, J.L. Evans, and A. Saxena: Int. Mater. Rev., Vol. 56, 2011, pp. 49-71.

    Article  Google Scholar 

  62. C.M. Branco, A.S. Brito, and J. Byrne: Proceedings of TRO AVT Workshop on “Qualification of Life Extension Schemes for Engine Components”, Corfu, Greece, October 1998.

  63. W. Hoffelner: Mater. Sci. Technol., 1987, vol. 3, pp. 765–70.

  64. J.A. Ruiz-Sabariego and S. Pommier: Int. J. Fatigue, Vol. 31, 2009, pp. 1724-32.

    Article  Google Scholar 

  65. J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, and A. Prescenzi: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 215–24.

  66. D. Rice, P. Kantzos, B. Hann, J. Neumann, and R. Helmink: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 139–47.

  67. J. Tsang, R.M. Kearsey, P. Au, S. Oppenheimer, and E. McDevitt: Can. Metall. Q., Vol. 50, No. 3, 2011, pp. 222-31.

    Article  Google Scholar 

  68. J.R. Rice: J. Appl. Mech., Vol. 35, 1968, pp. 379-86.

    Article  Google Scholar 

  69. D. Broek: Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands, 1978, pp. 218–19.

  70. M.P. Enright and K.S. Chan: J. ASTM Int., Vol. 1, No. 8, 2004, pp. 87-103.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NAVAIR under contract No. N68335-11-C-0171 and monitored by Mr. Raymond A. Pickering. The authors are thankful for the support of PW in providing the IN 718 data and the mission profile used in this study. The assistance by Ms. Lori Salas, SwRI, in the preparation of the manuscript is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwai S. Chan.

Additional information

Manuscript submitted April 1, 2013.

Appendix

Appendix

Oxidation at the crack tip is considered to occur within the damage zone, which is represented schematically by a crack-tip element of height d and width s in Figure 2. The plastic strain within the crack-tip element can be related to the crack-tip opening displacement, CTOD, and is approximated as[68]

$$ \varepsilon_{\text{tip}}^{\text{p}} = \frac{\text{CTOD}}{d} $$
(A1)

For small-scale yielding, CTOD is given by Reference 69

$$ {\text{CTOD}} = \frac{{K^{2} }}{{2\sigma_{y} E}} $$
(A2)

which can be combined with Eq. [A1] to give

$$ \varepsilon_{\text{tip}}^{\text{p}} = \frac{{K^{2} }}{{2\sigma_{y} E\;d}} $$
(A3)

Rearranging the terms in Eq. [2] leads one to

$$ \frac{1}{{t_{f} }} = \frac{1}{{t_{o} }}\left( {\frac{{\varepsilon_{\text{P} } }}{{\varepsilon_{\text{f} }^{ \ast } }}} \right)^{1/b} $$
(A4)

which is substituted into Eq. [1] to give

$$ \frac{da}{dt} = \frac{s}{{t_{\text{o}} }}\left( {\frac{{\varepsilon_{\text{P}} }}{{\varepsilon_{\text{f}}^{ \ast } }}} \right)^{1/b} $$
(A5)

which becomes

$$ \frac{da}{dt} = \frac{s}{{t_{\text{o}} }}\left[ {\frac{1}{{2\sigma_{y} E\varepsilon_{\text{f}}^{ \ast } d}}} \right]^{\frac{m}{2}} K^{m} $$
(A6)

upon substituting Eqs. [A3] into [A5] and setting m = 1/b. The crack-tip element height d is assumed to be a function of the grain size, D, according to the expression given by Reference 70

$$ d = d_{\text{o}} \;\left( {\frac{D}{{D_{\text{o}} }}} \right)^{\gamma } $$
(A7)

where D o is a reference grain size, d o is the crack-tip element height at the reference grain size D o, and γ is an empirical constant. The crack-tip element width, s, is assumed to be related to the diffusive flow of oxygen atoms from the crack tip and is expressed as

$$ s = s_{\text{o}} \;\exp \;\left( { - \frac{Q}{RT}} \right) $$
(A8)

substituting Eqs. [A7] and [A8] into Eq. [4]. The proposed model, Eq. [4], is fairly complex and contains a large number of material constants including the yield stress (σ y ), critical fracture strain (ε f), Young’s modulus (E), grain size (D), and activation energy for grain-boundary diffusion (Q). There are also several empirical constants such as m, γ, s o, t o, and d o. All of these parameters appear in the parameter B o in Eqs. [6] and [7]. For evaluating material constants and applying the model, only the B o parameter needs to be evaluated and individual contributors to B o need not be evaluated if experimental data are not readily available. Table AI presents the model constants for IN 718 for various Q values. It is noted that the value for s o/t o was adjusted for a given Q value so that the computed B o value matched the experimental B o. The s o/t o value is correlated to the Q value and s o/t o cannot be predicted at this time.

Table AI Model Constants for IN 718 at 923 K (650 °C) for Two Q Values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Enright, M.P., Moody, J. et al. A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems. Metall Mater Trans A 45, 287–301 (2014). https://doi.org/10.1007/s11661-013-1971-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1971-9

Keywords

Navigation