Skip to main content
Log in

A Coupled Cellular Automaton–Finite-Element Mathematical Model for the Multiscale Phenomena of Electroslag Remelting H13 Die Steel Ingot

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A coupled cellular automaton–finite-element mathematical model has been developed to investigate the multiscale phenomena of the electroslag remelting (ESR) H13 steel ingot. The heat transfer equation is solved to obtain the temperature distribution and liquid metal pool profile by a coarser finite-element (FE) mesh. Then, a regular network of square cells with a much finer scale is drawn for the simulation of microstructure with the cellular automaton (CA) technique. The continuous nucleation, which is based on the Gaussian distribution, is implemented to describe the heterogeneous nucleation. The growth kinetics of the dendritic tip is taken into account by the Kure–Giovanola–Trivedi model. At each time step, the temperature at the CA cell locations is interpolated from the temperature at four adjacent FE elements. The solute transfer is calculated using the FE method. Moreover, the evolution of the multiscale phenomena with growing of the ingot is considered by the varying boundary conditions. A reasonable agreement is demonstrated between the calculation and experiment. The results indicate that the shallow U-shaped metal pool would change to the deep V-shaped metal pool with the growing of the ingot. The vertical columnar grains appear at the bottom of the ingot, and an inverse V-shaped grain structure can be observed at the upper part of the ingot. It can be inferred that improving the undercooling can refine the microstructure and motivate the growing of the columnar grain during the ESR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Kharicha, A. Ludwig, and M. Wu, Mater. Sci. Eng. A 413, 129 (2005).

    Article  Google Scholar 

  2. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson, Metall. Mater. Trans. B 42B, 271 (2009).

    Article  Google Scholar 

  3. B.K. Li, F. Wang, and F. Tsukihashi, ISIJ Int. 52, 1289 (2012).

    Article  Google Scholar 

  4. B. Hernandez-Morales and A. Mitchell, Ironmak. Steelmak. 26, 423 (1999).

    Article  Google Scholar 

  5. A. Mitchell, Mater. Sci. Eng. A 413, 10 (2005).

    Article  Google Scholar 

  6. M. Ode, S.G. Kim, and T. Suzuki, ISIJ Int. 41, 1076 (2001).

    Article  Google Scholar 

  7. K. Oguchi and T. Suzuki, ISIJ Int. 47, 277 (2007).

    Article  Google Scholar 

  8. K. Oguchi and T. Suzuki, ISIJ Int. 47, 1432 (2007).

    Article  Google Scholar 

  9. J.A. Spittle and S.G.R. Brown, J. Mater. Sci. 23, 1777 (1989).

    Article  Google Scholar 

  10. J.A. Spittle and S.G.R. Brown, Acta Metall. Mater. 37, 1803 (1989).

    Article  Google Scholar 

  11. M. Rappaz and Ch-A Gandin, Acta Metall. Mater. 41, 345 (1993).

    Article  Google Scholar 

  12. G. Guillemot, Ch-A Gandin, and H. Combeau, ISIJ Int. 46, 880 (2006).

    Article  Google Scholar 

  13. Ch-A Gandin and M. Rappaz, Acta Mater. 45, 2187 (1997).

    Article  Google Scholar 

  14. Ch-A Gandin and M. Rappaz, Acta Metall. Mater. 42, 2233 (1994).

    Article  Google Scholar 

  15. Ch-A Gandin, J.-L. Desbiolles, M. Rappza, and Ph Thevoz, Metall. Mater. Trans. A 30A, 3153 (1999).

    Article  Google Scholar 

  16. B. Su, Z.Q. Han, and B.C. Liu, ISIJ Int. 53, 527 (2013).

    Article  Google Scholar 

  17. X. Xu, W. Zhang, and P.D. Lee, Metall. Mater. Trans. A 33A, 1805 (2002).

    Article  Google Scholar 

  18. Y. Zhao, D.F. Chen, M.J. Long, T.T. Arif, and R.S. Qin, Metall. Mater. Trans. B 45B, 719 (2013).

  19. B. Liu and Q. Xu, Metall. Mater. Trans. B 38B, 525 (2007).

    Article  Google Scholar 

  20. S. Luo, M.Y. Zhu, and S. Louhenkilpi, ISIJ Int. 52, 823 (2012).

    Article  Google Scholar 

  21. L. Nastac, S. Sundarraj, K.-O. Yu, and Y. Pang, JOM 50 (3), 30 (1998).

    Article  Google Scholar 

  22. M. Rappaz, Int. Mater. Rev. 34, 93 (1989).

    Article  Google Scholar 

  23. P. Thevoz, J.L. Desbiolles, and M. Rappaz, Metall. Trans. A 20A, 311 (1989).

    Article  Google Scholar 

  24. D.E. Ovsienko, G.A. Alfintsev, and V.V. Maslov, J. Cryst. Growth 26, 233 (1974).

    Article  Google Scholar 

  25. W. Kurz and R.N. Grugel, Mater. Sci. Forum 77, 185 (1991).

    Article  Google Scholar 

  26. W. Kurz, B. Giovanola, and R. Trivedi, Acta Metall. 34, 823 (1986).

    Article  Google Scholar 

  27. L. Nastac, Acta Mater. 47, 4253 (1999).

    Article  Google Scholar 

  28. M. Choudhary and J. Szekely, Metall. Trans. B 11B, 439 (1980).

    Article  Google Scholar 

  29. A. Jardy, D. Ablitzer, and J.F. Wadier, Metall. Trans. B 22B, 111 (1991).

    Article  Google Scholar 

  30. Y.Y. Sheng, G.A. Irons, and D.G. Tisdale, Metall. Mater. Trans. B 29B, 85 (1998).

    Article  Google Scholar 

  31. A. Mitchell and B. Hernandez-Morales, Metall. Trans. B 21B, 723 (1990).

    Article  Google Scholar 

  32. D. Kashchiev, A. Borissova, R.B. Hammond, and K.J. Robert, J. Phys. Chem. B 116, 5441 (2010).

    Article  Google Scholar 

  33. J. Wang, F. Wang, C. Li, and J. Zhang, ISIJ Int. 50, 222 (2010).

    Article  Google Scholar 

  34. Ch-A Gandin, M. Rappaz, and R. Tintillier, Metall. Trans. A 24A, 467 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ gratitude goes to National Natural Science Foundation of China (No. 50934008) and National Natural Science Foundation of China (No. 51210007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, Q., Wang, F. et al. A Coupled Cellular Automaton–Finite-Element Mathematical Model for the Multiscale Phenomena of Electroslag Remelting H13 Die Steel Ingot. JOM 66, 1153–1165 (2014). https://doi.org/10.1007/s11837-014-0979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0979-y

Keywords

Navigation