Skip to main content
Log in

Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the HOFFMAN yield criterion

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The dynamic analysis of composite shell structures is carried out by an explicit finite element code employing 4-node one-point quadrature elements. The anisotropic Hoffman yield criterion is adopted to model the laminates. The formulation for stress update using a backward Euler scheme is presented in the plane stress subspace. Several numerical examples are presented. The issue of implementing single-iteration schemes for stress update is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aravas, N. 1987: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Num. Meth. Engng. 25: 1395–1416

    Google Scholar 

  • Argyris, J.; Tenek, L. 1994: Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method. Comp. Meth. Appl. Engng. 113: 207–251

    Google Scholar 

  • Belytschko, T.; Lin, J. L.; Tsay, C.-S. 1984: Explicit algorithms for the nonlinear dynamics of shells. Comp. Meth. Appl. Mech. Engng. 42: 225–251

    Google Scholar 

  • Belytschko, T.; Plaskacz, E. J. 1992a: SIMD implementation of a non-linear transient shell program with partially structured meshes. Int. J. Num. Meth. Engng. 33: 997–1026

    Google Scholar 

  • Belytschko, T.; Wong, B. L.; Chiang, H.-Y. 1992b: Advances in one-point quadrature shell elements. Comp. Meth. Appl. Mech. Engng. 96: 93–107

    Google Scholar 

  • Belytschko, T.; Leviathan, I. 1994: Physical stabilization of the 4-node shell element with one point quadrature. Comp. Meth. Appl. Mech. Engng. 113: 321–350

    Google Scholar 

  • Burgoyne, C. J.; Crisfield, M. A. 1990: Numerical integration strategy for plates and shells. Int. J. Num. Meth. Engng. 29: 105–121

    Google Scholar 

  • Hill, R. 1950: The mathematical theory of plasticity. Oxford: Clarendon Press

    Google Scholar 

  • Hoffman, O. 1967: The brittle strength of orthotropic materials. J. Composite Mater. 1: 200–206

    Google Scholar 

  • Hughes, T. J. R.; Taylor, R. L.; Kanoknukulchai, W. 1977: A simple and efficient finite element for plate bending. Int. J. Num. Meth. Engng. 11: 1529–1547

    Google Scholar 

  • Hughes, T. J. R.; Cohen, M.; Haroun, M. 1978: Reduced and selective integration techniques in finite element analysis of plates. Nucl. Engng. Design. 46: 203–222

    Google Scholar 

  • Iu, V. P.; Cheung, Y. K. 1986: Non-linear vibration analysis of multilayer sandwich plates by incremental finite elements: 1. Theoretical development. Engng. Comput. 3: 36–42

    Google Scholar 

  • Kapania, R. K. 1988: Analysis of laminated shells, In: Hui, D.; Vinson, J. R. (eds.). Recent Advances in the macro-and micro-mechanics of composite materials structures. 177–187, AD-Vol. 13, ASME

  • Lee, J. H.; Zhang, Y. 1991: On the numerical integration of a class of pressure-dependent plasticity models with mixed hardening. Int. J. Num. Meth. Engng. 32: 419–438

    Google Scholar 

  • Li, Z. H. 1988: A refined finite element analysis of anisotropic laminated plates and shells, Ph. D. Thesis, Swansea: University College of Swansea

  • Liu, G. Q. 1985: Nonlinear and transient finite element analysis of general reinforced concrete plates and shells. Ph. D. Thesis, Swansea: University College of Swansea

  • Noor, A. K.; Burton, W. S. 1990: Three-dimensional solutions for antisymmetrically laminated anisotropic plates. J. Appl. Mech. 57: 182–188

    Google Scholar 

  • Owen, D. R. J.; Li, Z. H. 1989: A refined analysis of laminated plates by finite element displacement methods-I. Fundamentals and static analysis. Comput. Struct. 26: 907–914

    Google Scholar 

  • Owen, D. R. J.; Li, Z. H. 1989: Elastic-plastic dynamic analysis of anisotropic laminated plates. Comp. Meth. Appl. Mech. Engng. 70: 349–365

    Google Scholar 

  • Owen, D. R. J.; Liu, G. Q. 1985: Elasto-viscoplastic analysis of anisotropic laminated plates and shells. In: Middleton, J.; Pande, G. N. (eds.): Proc. Num. Meth. in Engng. Theory and Appl.-NUMETA 85, Vol. 2. 577–586, Rotterdam: Balkema

    Google Scholar 

  • Owen, D. R. J.; Liu, G. Q. 1986: Ultimate load behaviour of reinforced concrete plates and shells under dynamic transient loading. Int. J. Num. Meth. Engng. 22: 189–208

    Google Scholar 

  • Perić, D. 1993: On a class of constitutive equations in viscoplasticity: Formulation and computational issues. Int. J. Num. Meth. Engng. 36: 1365–1393

    Google Scholar 

  • Reddy, J. N.; Phan, N. D. 1985: Stability and vibration of isotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vibr. 98: 157–170

    Google Scholar 

  • Sacco, E.; Reddy, J. N. 1992: On first-and second-order moderate rotation theories of laminated plates. Int. J. Num. Meth. Engng. 33: 1–17

    Google Scholar 

  • Savoia, M.; Reddy, J. N. 1992: A variational approach to three-dimensional elsticity solutions of laminated composite plates. ASME, J. Appl. Mech. 59: S166-S175

    Google Scholar 

  • Schellekens, J. C. 1992: Computational strategies for composite structures. PhD Thesis. Delft: Delft University of Technology

  • Schoenfeld, S.; Benson, D. 1993: Quickly convergent integration methods for plane stress plasticity, Comm. Num. Meth. Engng. 9: 293–305

    Google Scholar 

  • Simo, J. C.; Taylor, R. L. 1986: A return mapping algorithm for plane stress elastoplasticity. Int. J. Num. Meth. Engng. 22: 649–670

    Google Scholar 

  • Tessler, A.; Saether, E. 1991: A computationally viable higher-order theory for laminated composite plates. Int. J. Num. Meth. Engng. 31: 1069–1086

    Google Scholar 

  • Tsai, S. W.; Wu, E. M. 1971: A general theory of strength for anisotropic materials. J. Comp. Mater. 5: 58–80

    Google Scholar 

  • Tsui, T. Y.; Tong, P. 1971: Stability of transient solution of moderately thick plate by finite difference method. AIAA J. 9: 2062–2063

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 4 April 1995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, C.G., Owen, D.R.J. & Perić, D. Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the HOFFMAN yield criterion. Computational Mechanics 16, 307–314 (1995). https://doi.org/10.1007/BF00350720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350720

Keywords

Navigation