Skip to main content
Log in

The theory of Ostwald ripening

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Developments in the theory of Ostwald ripening since the classic work of I. M. Lifshitz and V. V. Slyozov (LS) are reviewed and directions for future work are suggested. Recent theoretical work on the role of a finite volume fraction of coarsening phase on the ripening behavior of two-phase systems is reformulated in terms of a consistent set of notation through which each of the theories can be compared and contrasted. Although more theoretical work is necessary, these theories are in general agreement on the effects of a finite volume fraction of coarsening phase on the coarsening behavior of two-phase systems. New work on transient Ostwald ripening is presented which illustrates the broad range of behavior which is possible in this regime. The conditions responsible for the presence of the asymptotic state first discovered by LS, as well as the manner in which this state is approached, are also discussed. The role of elastic fields during Ostwald ripening in solid-solid mixtures is reviewed, and it is shown that these fields can play a dominant role in determining the coarsening behavior of a solid-solid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Mullins, inMetal Surfaces, Vol. 17, (American Society for Metals, 1962).

  2. W. Ostwald,Z. Phys. Chem. 37:385 (1901).

    Google Scholar 

  3. W. Ostwald,Analytisch Chemie, 3rd ed. (Engelmann, Leipzig, 1901), p. 23.

    Google Scholar 

  4. G. W. Greenwood,Acta. Met. 4:243 (1956).

    Google Scholar 

  5. R. Asimov,Acta. Met. 11:72 (1962).

    Google Scholar 

  6. I. M. Lifshitz and V. V. Slyozov,J. Phys. Chem. Solids 19:35 (1961).

    Google Scholar 

  7. C. Wagner,Z. Elektrochemie 65:581 (1961).

    Google Scholar 

  8. P. W. Voorhees and M. E. Glicksman,Acta. Met., in press.

  9. Howard B. Aaron, Dora Fainstein, and Gerald R. Kotler,J. Appl. Phys. 41:4404 (1970).

    Google Scholar 

  10. E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics (Pergamon Press, London, 1981), p. 432.

    Google Scholar 

  11. R. D. Vengrenovitch,Acta. Met. 30:1079 (1982).

    Google Scholar 

  12. K. Binder,Phys. Rev. B 15:4925 (1977).

    Google Scholar 

  13. J. A. Marqusee and John Ross,J. Chem. Phys. 79:373 (1983).

    Google Scholar 

  14. Chan Hyoung Kang and Duk N. Yoon,Met. Trans. A 12A:65 (1981).

    Google Scholar 

  15. Y. Masuda and R. Watanabe, inSintering Processes, Materials Science Research, Vol. 13, G. C. Kuczynski, ed. (Plenum, New York, 1979), p. 3.

    Google Scholar 

  16. C. K. L. Davies, P. Nash, and R. N. Stevens,J. Mat. Sci. 15:1521 (1980).

    Google Scholar 

  17. A. J. Ardell,Acta. Met. 20:61 (1972).

    Google Scholar 

  18. P. W. Voorhees and R. J. Schaefer, unpublished.

  19. C. K. L. Davies, P. Nash, and R. N. Stevens,Acta. Met. 28:179 (1980).

    Google Scholar 

  20. K. Tsumuraya and Y. Miyata,Acta. Met. 31:437 (1983).

    Google Scholar 

  21. A. D. Brailsford and P. Wynblatt,Acta. Met. 27:489 (1979).

    Google Scholar 

  22. P. W. Voorhees and M. E. Glicksman,Acta. Met., in press.

  23. M. E. Glicksman and P. W. Voorhees, unpublished.

  24. J. A. Marqusee and John Ross,J. Chem. Phys. 80:536 (1984).

    Google Scholar 

  25. M. Tokuyama and K. Kawasaki,Physica 123A:386 (1984).

    Google Scholar 

  26. B. V. Felderhoff and J. M. Deutch,J. Chem. Phys. 64:4551 (1976).

    Google Scholar 

  27. A. D. Brailsford,J. Nuc. Mat. 60:257 (1976).

    Google Scholar 

  28. J. J. Weins and J. W. Cahn, inSintering and Related Phenomena, G. C. Kuczynskie, ed. (Plenum, London, 1973), p. 151.

    Google Scholar 

  29. H. Mori,Prog. Theor. Phys. 53 (1975).

  30. H. Mori and J. K. McNeil,Prog. Theor. Phys. 57:770 (1977).

    Google Scholar 

  31. M. Tokuyama and H. Mori,Prog. Theor. Phys. 56:1073 (1976),58:92 (1977).

    Google Scholar 

  32. M. Tokuyama, Y. Enomoto, and K. Kawaski, preprint.

  33. M. Muthukumar and R. E. Cukier,J. Stat. Phys. 26:456 (1981).

    Google Scholar 

  34. M. Bixon and R. Zwanzig,J. Chem. Phys. 75:2359 (1981).

    Google Scholar 

  35. M. Tokuyama and R. I. Cukier,J. Chem. Phys. 76:6202 (1982).

    Google Scholar 

  36. Daniel F. Calet and J. M. Deutch,Ann. Rev. Phys. Chem. 34:394 (1983).

    Google Scholar 

  37. P. P. Ewald,Ann. Phys. (Leipzig) 64:253 (1921).

    Google Scholar 

  38. D. J. Chellman and A. J. Ardell,Acta. Met. 22:577 (1974).

    Google Scholar 

  39. G. Venzl,Ber. Busenges. Phys. Chem. 87:318 (1983).

    Google Scholar 

  40. K. M. Vedula and R. W. Heckel,Met. Trans. 1:9 (1970).

    Google Scholar 

  41. Ryuzo Watanbe, Karou Tada, and Yoshimichi Masuda,Z. Metallkunde 67:619 (1970).

    Google Scholar 

  42. H. Wendt and P. Hansen,Acta. Met. 31:1649 (1983).

    Google Scholar 

  43. J. W. Cahn,Acta. Met. 9:795 (1961).

    Google Scholar 

  44. A. J. Ardell and R. B. Nicholson,Acta. Met. 14:1295 (1966).

    Google Scholar 

  45. W. C. Johnson and P. W. Voorhees,Met. Trans., in press.

  46. A. G. Khachaturyan and G. A. Shatalov,Phys. Status Solidi (A) 26:61 (1974).

    Google Scholar 

  47. V. Perovic, G. R. Purdy, and L. M. Brown,Acta. Met. 27:1075 (1979).

    Google Scholar 

  48. W. C. Johnson,Acta. Met. 32:465 (1984).

    Google Scholar 

  49. F. C. Larche and J. W. Cahn,Acta. Met. 21:1050 (1973).

    Google Scholar 

  50. F. C. Larche and J. W. Cahn,Acta. Met. 30:1835 (1982).

    Google Scholar 

  51. Rene Samson and J. M. Deutch,J. Chem. Phys. 67:847 (1977).

    Google Scholar 

  52. Martin Goldstein,J. Cryst. Growth 3:599 (1968).

    Google Scholar 

  53. M. E. Glicksman, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voorhees, P.W. The theory of Ostwald ripening. J Stat Phys 38, 231–252 (1985). https://doi.org/10.1007/BF01017860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017860

Key words

Navigation