Skip to main content
Log in

Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was conducted of the thermal diffusivity' specific heat and thermal conductivity of a uniaxially carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. The thermal diffusivity and conductivity parallel to the fibre direction was found to be independent of thermal history and more than an order of magnitude higher than in the transverse directions. During the first thermal cycle, the thermal diffusivi1y transverse to the fibre direction was found to exhibit a decrease attributed to crack formation under the influence of internal stresses. The transverse thermal diffusively on thermal cycling to 1000° C exhibited lower values during heating than during subsequent cooling. This hysteresis was attributed to a thermal history-dependent barrier to heat flow at the matrix-fibre interface. The thermal conductivity of the fibres along their length inferred from composite theory was found to be much lower than the corresponding value for pyrolytic graphite, attributed to less than complete graphitization and associated high density of lattice defects which act as phonon scatterers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. M. Prewo andJ. J. Brennan,J. Mater. Sci.15 (1980) 463.

    Article  CAS  ADS  Google Scholar 

  2. K. M. Prewo andJ. J. Brennan,ibid.17 (1982) 1201.

    Article  CAS  ADS  Google Scholar 

  3. J. J. Brennan andK. M. Prewo,ibid.17 (1982) 2371.

    Article  CAS  ADS  Google Scholar 

  4. M. Dauchier, P. Lamicq andJ. Mace,Revue Int. des Hautes Temperatures et des Refractaires19 (1982) 285.

    CAS  Google Scholar 

  5. J. J. Brennan, L. D. Bentsen andD. P. H. Hasselman,J. Mater. Sci.17 (1982) 2337.

    Article  CAS  ADS  Google Scholar 

  6. H. Tawil, L. D. Bentsen, S. Baskaran andD. P. H. Hasselman,ibid.20 (1985) 3201.

    Article  CAS  ADS  Google Scholar 

  7. M. W. Pilling, B. Yates, M. A. Black andP. Tattersall,ibid.14 (1979) 1326.

    Article  CAS  ADS  Google Scholar 

  8. W. J. Parker, R. J. Jenkins, C. P. Butler andG. L. Abbott,J. Appl. Phys.32 (1961) 1679.

    Article  CAS  ADS  Google Scholar 

  9. M. S. Deshpande, R. H. Bogaard andR. E. Taylor,Int. J. Thermophysics2 (1981) 357.

    Article  CAS  ADS  Google Scholar 

  10. R. E. Taylor,High Temperatures — High Pressures15 (1983) 299.

    CAS  Google Scholar 

  11. R. C. Heckman,J. Appl. Phys.44 (1973) 1455.

    Article  ADS  Google Scholar 

  12. A. E. Powers, “Conductivity of Aggregates” (Knolls Atomic Power Laboratory TR-2145, Schenectady, New York, 1961).

    Google Scholar 

  13. S. Nasu, T. Takahashi andT. Kikuchi,J. Nucl. Mater.43 (1972) 72.

    Article  CAS  ADS  Google Scholar 

  14. T. Tanaka andH. Suzuki,Carbon10 (1972) 253.

    Article  CAS  Google Scholar 

  15. M. R. Null, W. W. Lozier andA. W. Moore,Carbon11 (1973) 81.

    Article  CAS  Google Scholar 

  16. L. D. Bentsen, J. R. Thomas, Jr andD. P. H. Hasselman,J. Amer. Ceram. Soc.67 (1984) C-90.

    Google Scholar 

  17. L. D. Bentsen, D. P. H. Hasselman andJ. J. Brennan, in “Thermal Conductivity 18”, Edited by T. Ashworth and D. R. Smith (Plenum Press, 1985) p. 499.

  18. D. P. H. Hasselman,J. Comp. Mater.12 (1978) 403.

    Article  Google Scholar 

  19. R. C. Bradt, D. P. H. Hasselman andF. F. Lange (eds) “Fracture Mechanics of Ceramics, Vol. 4: Crack Growth and Microstructure”, (Plenum Press, 1978).

  20. Y. Tree, A. Venkateswaran andD. P. H. Hasselman,J. Mater. Sci.18 (1983) 2135.

    Article  CAS  ADS  Google Scholar 

  21. J. A. Nairn andP. Zoller,ibid.20 (1985) 355.

    Article  CAS  ADS  Google Scholar 

  22. B. R. Powell Jr,G. E. Youngblood, D. P. H. Hasselman andL. D. Bentsen,J. Am. Ceram. Soc.63 (1980) 581.

    Article  CAS  Google Scholar 

  23. H. J. Siebeneck, D. P. H. Hasselman, J. J. Cleveland andR. C. Bradt,ibid.59 (1976) 241.

    Article  CAS  Google Scholar 

  24. H. J. Siebeneck, J. J. Cleveland, D. P. H. Hasselman andR. C. Bradt,ibid.60 (1977) 336.

    Article  CAS  Google Scholar 

  25. L. D. Bentsen, D. P. H. Hasselman andN. Claussen, in Proceedings of a Conference on Degradation of Engineering Materials (Virginia Polytechnic Institute, 1981) p. 369.

  26. L. D. Bentsen andD. P. H. Hasselman, in “Thermal Conductivity 18” (Plenum Press 1985) p. 485.

  27. Y. S. Touloukian andE. H. Buyco, “Thermophysical Properties of Matter, Vol. 5, Specific Heat, Non-Metallic Solids”, (IFI/Plenum Publishing Co., New York, 1970) pp. 4–14.

    Google Scholar 

  28. S. G. Bapat,Carbon11 (1973) 511.

    Article  CAS  Google Scholar 

  29. C. N. Hooker, A. R. Ubbelohde andD. A. Young,Proc. Soc.A284 (1965) 17.

    Article  ADS  Google Scholar 

  30. A. de Comberieu,J. Phys.28 (1967) 951.

    Google Scholar 

  31. R. Taylor,Phil. Mag.13 (1966) 157.

    Article  CAS  ADS  Google Scholar 

  32. M. G. Holland, C. A. Klein andW. D. Straub,J. Phys. Chem. Solids27 (1966) 903.

    Article  CAS  ADS  Google Scholar 

  33. J. Heremans, C. P. Beetz, Jr.,I. Rahim andM. S. Dresselhaus, “Thermal Conductivity 19” (Plenum Press) in press.

  34. B. Nysten, L. Piraux andJ. -P. Issi, “Thermal Conductivity 19” (Plenum Press) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasselman, D.P.H., Johnson, L.F., Syed, R. et al. Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. J Mater Sci 22, 701–709 (1987). https://doi.org/10.1007/BF01160791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160791

Keywords

Navigation