Skip to main content
Log in

The effect of inactivation of calcium channels by intracellular Ca2+ ions in the bursting pancreatic β-cells

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

Based on recently determined ionic channel properties, a simple theoretical model for the burst activity of the pancreatic β-cell is formulated in this paper. The model contains an inward voltage-activated Ca2+ current which is inactivated by intracellular calcium ions and an outward K+ current that is activated by the membrane potential. The probability of opening of the channel gates is represented by Boltzmann equations. Our model is applicable in a regime where an ATP-blockable K+ channel is inhibited. In this regime, glucose is treated as an activator for the rate of efflux of intracellular Ca2+ ions, and hence its effect is equated tok Ca, the efflux rate constant. In addition, intracellular H+ ion, which is a byproduct of the glycolytic metabolic process, is treated as a competitive inhibitor for Ca2+ ion. Since H+ is a competitive inhibitor (according to our assumption), its effect is equated to the strength of the Cai dissociation constantK h. In the model, a Ca2+ binding site is assumed to exist in the inner membrane of the voltage-gated Ca2+ channel. The model predicts that a spike and burst electrical pattern can be generated by varyingk ca and that a given pattern may produce different levels of intracellular Ca2+ depending onK h. In other words, it predicts that levels of [Ca2+]i can be separated from the electrical activity by controlling the concentration of glucose and pH appropriately. This may account for the experimental observation of Lebrun et al. (1985) that insulin secretion is not correlated to the burst of electrical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean, P. M., and Mathews, E. K. (1970),J. Physiol. 210, 255.

    PubMed  CAS  Google Scholar 

  2. Meissner, H. P. (1976),J. Physiol. Paris 72, 757.

    PubMed  CAS  Google Scholar 

  3. Beigelman, P. M., Ribalet, B., and Atwater, I. (1977),J. Physiol. Paris 73, 201.

    PubMed  CAS  Google Scholar 

  4. Ribalet, B., and Beigelman, P. M. (1979),Am. J. Physiol. 237, C137.

    PubMed  CAS  Google Scholar 

  5. Atwater, I., Dawson, C. M., Scott, A., Eddlestone, G., and Rojas, E. (1980), The Nature of the Oscillatory Behavior in Electrical Activity of Pancreatic β-cell, in Biochemistry Biophysics of the Pancreatic β-cell. Georg Thieme Verlag, New York, pp. 100–107.

    Google Scholar 

  6. Cook, D. L. (1984),Fed. Proc. 43, 2368.

    PubMed  CAS  Google Scholar 

  7. Rorsman, P., Abrahamsson, H., Gylfe, E., and Hellman, B. (1984),Fed. Eur. Biochem. Soc. Lett. 170, 196.

    CAS  Google Scholar 

  8. Wollheim, C. B., and Pozzan, T. (1986),J. Biol. Chem. 259, 2262.

    Google Scholar 

  9. Pace, C. S., Tarvin, J. T., and Simith, J. S. (1983),Am. J. Physiol. 244, E3.

    PubMed  CAS  Google Scholar 

  10. Eddlestone, G. T., and Beigelman, P. M. (1983),Am. J. Physiol. 244, C188.

    PubMed  CAS  Google Scholar 

  11. Cook, D. L., and Hales, N. (1984),Nature 311, 271.

    Article  PubMed  CAS  Google Scholar 

  12. Ashcroft, F. M., Harrison, D. E., Ashcroft, S. J. H. (1984),Nature 312, 446.

    Article  PubMed  CAS  Google Scholar 

  13. Chay, T. R., and Keizer, J. (1983),Biophys. J. 42, 181.

    Article  PubMed  CAS  Google Scholar 

  14. Chay, T. R. (1985),Biol. Cybern. 52, 339.

    Article  PubMed  CAS  Google Scholar 

  15. Himmel, D. M., and Chay, T. R. (1987),Biophys. J. 51, 89.

    PubMed  CAS  Google Scholar 

  16. Chay, T. R. (1986),Biophys. J. 50, 765.

    PubMed  CAS  Google Scholar 

  17. Hodgkin, A., and Huxley, A. F. (1952),J. Physiol. (London)117, 500.

    CAS  Google Scholar 

  18. Cook, D. L., Ikeuchi, M., and Fujimoto, W. (1984),Nature,311, 269.

    Article  PubMed  CAS  Google Scholar 

  19. Findlay, I., and Dunne, M. (1985),FEBS 2940 189, 281.

    Article  CAS  Google Scholar 

  20. Rorsman, P., and Trube, G. (1986),J. Physiol. 374, 531.

    PubMed  CAS  Google Scholar 

  21. Satin, L. S., and Cook, D. L. (1985),Pflugers Arch. 404, 385.

    Article  PubMed  CAS  Google Scholar 

  22. Hagiwara, S., and Byerly, L. (1981),Ann. Rev. Neurosci. 4, 69.

    Article  PubMed  CAS  Google Scholar 

  23. Tsien, R. W. (1983),Ann. Rev. Physiol. 945, 341.

    Article  Google Scholar 

  24. Eckert, R., and Chad, J. E. (1984),Prog. Biophys. Molec. Biol. 44, 215.

    Article  CAS  Google Scholar 

  25. Hindmarsh, A. C. (1974), Ordinary Differential Equations Systems Solver. Lawrence Livermore Laboratory. Livermore, CA. Report.

    Google Scholar 

  26. Atwater, I., Ribalet, B., and Rojas E. (1978),J. Physiol. 278, 117.

    PubMed  CAS  Google Scholar 

  27. Lebrun, P., Atwater, I., Rosario, L. M., Herchuelz, A., and Malaisse, W. J. (1985),Metabolism 34, 1122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chay, T.R. The effect of inactivation of calcium channels by intracellular Ca2+ ions in the bursting pancreatic β-cells. Cell Biophysics 11, 77–90 (1987). https://doi.org/10.1007/BF02797114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02797114

Index Entries

Navigation