Skip to main content
Log in

Categorical equivalence and the Ramsey property for finite powers of a primal algebra

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the best known and most important example of a categorical equivalence in algebra, that between the variety of boolean algebras and any variety generated by a single primal algebra. We consider this equivalence in the context of Kechris-Pestov-Todorčević correspondence, a surprising correspondence between model theory, combinatorics and topological dynamics. We show that relevant combinatorial properties (such as the amalgamation property, Ramsey property and ordering property) carry over from a category to an equivalent category. We then use these results to show that the category whose objects are isomorphic copies of finite powers of a primal algebra \({\mathcal{A}}\) together with a particular linear ordering <, and whose morphisms are embeddings, is a Ramsey age (and hence a Fraïssé age). By the Kechris-Pestov-Todorčević correspondence, we then infer that the automorphism group of its Fraïssé limit is extremely amenable. This correspondence also enables us to compute the universal minimal flow of the Fraïssé limit of the class \({{\bf V}_{fin} \mathcal{(A)}}\) whose objects are isomorphic copies of finite powers of a primal algebra \({\mathcal{A}}\) and whose morphisms are embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer-Verlag (1981)

  2. Fouché W.L.: Symmetries and Ramsey properties of trees. Discrete Math. 197/198, 325–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Graham, R.L., Leeb K., Rothschild, B.L.: Ramsey’s theorem for a class of categories. Advances in Math. 8, 417–443 (1972); errata 10, 326–327 (1973)

  4. Graham R.L., Rothschild B.L.: Ramsey’s theorem for n-parameter sets. Tran. Amer. Math. Soc. 159, 257–292 (1971)

    MathSciNet  MATH  Google Scholar 

  5. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory (2nd Ed). John Wiley & Sons (1990)

  6. Hodges, W.: Model Theory. Cambridge University Press (1993)

  7. Hu T.K.: Stone duality for primal algebra theory. Math. Z. 110, 180–198 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu T.K.: On the topological duality for primal algebra theory. Algebra Univers. 1, 152–154 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kechris A.S., Pestov V.G., Todorčević S.: Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups. Geom. Funct. Anal. 15, 106–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Müller M., Pongrácz A.: Topological dynamics of unordered Ramsey structures. Fund. Math. 230, 77–98 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nešetřil J.: Ramsey classes and homogeneous structures. Combin. Probab. Comput. 14, 171–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nešetřil, J., Rödl, V.: Partition (Ramsey) theory and its applications. In: Surveys in Combinatorics, Cambridge University Press, Cambridge, 96–156 (1979)

  13. Nguyen Van Thé, L.: Universal flows of closed subgroups of \({S_\infty}\) and relative extreme amenability. Asymptotic Geometric Analysis, Fields Institute Communications 68 229–245 (2013)

  14. Pestov V.G.: On free actions, minimal flows and a problem by Ellis. Trans. Amer, Math. Soc. 350, 4149–4165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prömel H.J., Voigt B.: Hereditary attributes of surjections and parameter sets. European J. Combin. 7, 161–170 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramsey F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264–286 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  17. Scow L.: Indiscernibles, EM-types, and Ramsey classes of trees. Notre Dame J. Form. Log. 56, 429–447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shelah, S.: Classification Theory (2nd Ed). North Holland (1990)

  19. Solecki, S: Dual Ramsey theorem for trees. Preprint (arXiv:1502.04442v1)

  20. Zucker A.: Topological dynamics of automorphism groups, ultrafilter combinatorics, and the Generic Point Problem. Trans. Amer. Math. Soc. 368, 6715–6740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Mašulović.

Additional information

Presented by M. Ploscica.

The research of the first author was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No 174019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mašulović, D., Scow, L. Categorical equivalence and the Ramsey property for finite powers of a primal algebra. Algebra Univers. 78, 159–179 (2017). https://doi.org/10.1007/s00012-017-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0453-0

2010 Mathematics Subject Classification

Key words and phrases

Navigation