Skip to main content
Log in

A note on Schanuel’s conjectures for exponential logarithmic power series fields

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In Ax (Ann. Math. 93(2):252–268, 1971), J. Ax proved a transcendency theorem for certain differential fields of characteristic zero : the differential counterpart of the still open Schanuel conjecture about the exponential function over \({\mathbb{C}}\) (Lang, Introduction to transcendental numbers, 1966). In this article, we derive from Ax’s theorem transcendency results in the context of differential valued exponential fields. In particular, we obtain results for exponential Hardy fields, Logarithmic-Exponential power series fields, and Exponential-Logarithmic power series fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ax, On Schanuel’s, conjectures. Ann. of Math. (2), 93 (1971), 252–268.

  2. L. van den Dries, A. Macintrye, and D. Marker, Logarithmic-exponential series, Proceedings of the International Conference “Analyse & Logique” (Mons, 1997), Ann. Pure Appl. Logic, vol. 111, 61–113.

  3. Dushnik B., Miller E. W.: Concerning similarity transformations of linearly ordered sets. Bull. Amer. Math. Soc. 46, 322–326 (1940)

    Article  MathSciNet  Google Scholar 

  4. H. Hahn, Über die nichtarchimedischen Grössensystem, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch - Naturwissenschaftliche Klasse (Wien) 116 (1907), 601–655.

  5. G. H. Hardy, Orders of infinity: The ‘Infinitärcalül’ of Paul du Bois-Reymond, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 12, Cambridge University Press, 1910.

  6. van der Hoeven J.: Operators on generalized power series. Illinois J. Math. 45, 1161–1190 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Kaplansky I.: Maximal fields with valuations. Duke Math. J. 9, 303–321 (1942)

    Article  MathSciNet  Google Scholar 

  8. S. Kuhlmann, Ordered Exponential Fields, Fields Institute Monographs, vol.12, American Mathematical Society, Providence, RI, 2000.

  9. Kuhlmann S., Matusinski M.: Hardy type derivations on fields of exponential logarithmic series. J. Algebra 345, 171–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuhlmann S., Matusinski M.: Hardy type derivations in generalized series fields. J. Algebra 351, 185–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Lang, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.

  12. Rosenlicht M.: The rank of a Hardy field. Trans. Amer. Math. Soc. 280, 659–671 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Kuhlmann.

Additional information

This joint work was inspired during the first author’s visit to Ben Gurion University sponsored by the Institute for Advanced Studies in mathematics at Ben Gurion University. The first author wishes to thank the institute for this opportunity.

The third author was supported by a postdoctoral fellowship funded by the Skirball Foundation via the Center for Advanced Studies in Mathematics at Ben-Gurion University of the Negev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann, S., Matusinski, M. & Shkop, A.C. A note on Schanuel’s conjectures for exponential logarithmic power series fields. Arch. Math. 100, 431–436 (2013). https://doi.org/10.1007/s00013-013-0520-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0520-5

Mathematics Subject Classification (2000)

Keywords

Navigation