Skip to main content
Log in

In front of and behind the replication fork: bacterial type IIA topoisomerases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Topoisomerases are vital enzymes specialized in controlling DNA topology, in particular supercoiling and decatenation, to properly handle nucleic acid packing and cell dynamics. The type IIA enzymes act by cleaving both strands of a double helix and having another strand from the same or another molecule cross the DNA gate before a re-sealing event completes the catalytic cycle. Here, we will consider the two types of IIA prokaryotic topoisomerases, DNA Gyrase and Topoisomerase IV, as crucial regulators of bacterial cell cycle progression. Their synergistic action allows control of chromosome packing and grants occurrence of functional transcription and replication processes. In addition to displaying a fascinating molecular mechanism of action, which transduces chemical energy into mechanical energy by means of large conformational changes, these enzymes represent attractive pharmacological targets for antibacterial chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kalkbrenner T, Arnold A, Tans SJ (2009) Internal dynamics of supercoiled DNA molecules. Biophys J 96:4951–4955

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Deibler RW, Chan HS, Zechiedrich L (2009) The why and how of DNA unlinking. Nucleic Acids Res 37:661–671

    Article  CAS  PubMed  Google Scholar 

  3. Wasserman SA, Cozzarelli NR (1986) Biochemical topology: applications to DNA recombination and replication. Science 232:951–960

    Article  CAS  PubMed  Google Scholar 

  4. Drolet M (2006) Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59:723–730

    Article  CAS  PubMed  Google Scholar 

  5. Ohniwa RL, Morikawa K, Kim J, Ohta T, Ishihama A, Wada C, Takeyasu K (2006) Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J 25:5591–5602

    Article  CAS  PubMed  Google Scholar 

  6. Schvartzman JB, Stasiak A (2004) A topological view of the replicon. EMBO Rep 5:256–261

    Article  CAS  PubMed  Google Scholar 

  7. Bates AD, Maxwell A (2007) Energy coupling in type II topoisomerases: why do they hydrolyze ATP? Biochemistry 46:7929–7941

    Article  CAS  PubMed  Google Scholar 

  8. Baker NM, Rajan R, Mondragon A (2009) Structural studies of type I topoisomerases. Nucleic Acids Res 37:693–701

    Article  CAS  PubMed  Google Scholar 

  9. Forterre P, Gribaldo S, Gadelle D, Serre MC (2007) Origin and evolution of DNA topoisomerases. Biochimie 89:427–446

    Article  CAS  PubMed  Google Scholar 

  10. Tse-Dinh YC (2007) Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases. Infect Disord Drug Targets 7:3–9

    Article  CAS  PubMed  Google Scholar 

  11. Deweese JE, Osheroff MA, Osheroff N (2008) DNA topology and topoisomerases: teaching a “Knotty” subject. Biochem Mol Biol Educ 37:2–10

    Article  PubMed  CAS  Google Scholar 

  12. Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37:738–748

    Article  CAS  PubMed  Google Scholar 

  13. Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337

    Article  CAS  PubMed  Google Scholar 

  14. Nollmann M, Crisona NJ, Arimondo PB (2007) Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie 89:490–499

    Article  PubMed  CAS  Google Scholar 

  15. Schoeffler AJ, Berger JM (2008) DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 41:41–101

    CAS  PubMed  Google Scholar 

  16. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  PubMed  Google Scholar 

  17. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    Article  CAS  PubMed  Google Scholar 

  18. Schmutz E, Muhlenweg A, Li SM, Heide L (2003) Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin. Antimicrob Agents Chemother 47:869–877

    Article  CAS  PubMed  Google Scholar 

  19. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  20. Aubry A, Fisher LM, Jarlier V, Cambau E (2006) First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun 348:158–165

    Article  CAS  PubMed  Google Scholar 

  21. Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73:3872–3876

    Article  CAS  PubMed  Google Scholar 

  22. Higgins NP, Peebles CL, Sugino A, Cozzarelli NR (1978) Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 75:1773–1777

    Article  CAS  PubMed  Google Scholar 

  23. Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393–404

    Article  CAS  PubMed  Google Scholar 

  24. Peng H, Marians KJ (1993) Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem 268:24481–24490

    CAS  PubMed  Google Scholar 

  25. Mizuuchi K, Mizuuchi M, O’Dea MH, Gellert M (1984) Cloning and simplified purification of Escherichia coli DNA gyrase A and B proteins. J Biol Chem 259:9199–9201

    CAS  PubMed  Google Scholar 

  26. Pan XS, Fisher LM (1996) Cloning and characterization of the parC and parE genes of Streptococcus pneumoniae encoding DNA topoisomerase IV: role in fluoroquinolone resistance. J Bacteriol 178:4060–4069

    CAS  PubMed  Google Scholar 

  27. Mizuuchi K, Fisher LM, O’Dea MH, Gellert M (1980) DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc Natl Acad Sci USA 77:1847–1851

    Article  CAS  PubMed  Google Scholar 

  28. Wang JC (1987) DNA topoisomerases: from a laboratory curiosity to a subject in cancer chemotherapy. NCI Monogr 3–6

  29. Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910

    Article  CAS  PubMed  Google Scholar 

  30. Roca J, Wang JC (1994) DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell 77:609–616

    Article  CAS  PubMed  Google Scholar 

  31. Roca J, Berger JM, Harrison SC, Wang JC (1996) DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci USA 93:4057–4062

    Article  CAS  PubMed  Google Scholar 

  32. Roca J (2004) The path of the DNA along the dimer interface of topoisomerase II. J Biol Chem 279:25783–25788

    Article  CAS  PubMed  Google Scholar 

  33. Roca J (2009) Topoisomerase II: a fitted mechanism for the chromatin landscape. Nucleic Acids Res 37:721–730

    Article  CAS  PubMed  Google Scholar 

  34. Maxwell A, Costenaro L, Mitelheiser S, Bates AD (2005) Coupling ATP hydrolysis to DNA strand passage in type IIA DNA topoisomerases. Biochem Soc Trans 33:1460–1464

    Article  CAS  PubMed  Google Scholar 

  35. Sissi C, Palumbo M (2009) Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res 37:702–711

    Article  CAS  PubMed  Google Scholar 

  36. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  CAS  PubMed  Google Scholar 

  37. Simon H, Roth M, Zimmer C (1995) Biochemical complementation studies in vitro of gyrase subunits from different species. FEBS Lett 373:88–92

    Article  CAS  PubMed  Google Scholar 

  38. Huang WM (1996) Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107

    Article  CAS  PubMed  Google Scholar 

  39. Costenaro L, Grossmann JG, Ebel C, Maxwell A (2005) Small-angle X-ray scattering reveals the solution structure of the full-length DNA gyrase a subunit. Structure 13:287–296

    Article  CAS  PubMed  Google Scholar 

  40. Costenaro L, Grossmann JG, Ebel C, Maxwell A (2007) Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering. Structure 15:329–339

    Article  CAS  PubMed  Google Scholar 

  41. Aravind L, Leipe DD, Koonin EV (1998) Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26:4205–4213

    Article  CAS  PubMed  Google Scholar 

  42. Fass D, Bogden CE, Berger JM (1999) Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Biol 6:322–326

    Article  CAS  PubMed  Google Scholar 

  43. Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC (1997) Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388:903–906

    Article  CAS  PubMed  Google Scholar 

  44. Dong KC, Berger JM (2007) Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450:1201–1205

    Article  CAS  PubMed  Google Scholar 

  45. Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, Gross CH (2004) Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob Agents Chemother 48:1856–1864

    Article  CAS  PubMed  Google Scholar 

  46. Laponogov I, Veselkov DA, Sohi MK, Pan XS, Achari A, Yang C, Ferrara JD, Fisher LM, Sanderson MR (2007) Breakage-reunion domain of Streptococcus pneumoniae topoisomerase IV: crystal structure of a Gram-positive quinolone target. PLoS One 2:e301

    Article  PubMed  CAS  Google Scholar 

  47. Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM (2005) The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol 351:545–561

    Article  CAS  PubMed  Google Scholar 

  48. Laponogov I, Sohi MK, Veselkov DA, Pan XS, Sawhney R, Thomson AW, McAuley KE, Fisher LM, Sanderson MR (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 16:667–669

    Article  CAS  PubMed  Google Scholar 

  49. Fu G, Wu J, Liu W, Zhu D, Hu Y, Deng J, Zhang XE, Bi L, Wang DC (2009) Crystal structure of DNA gyrase B’ domain sheds lights on the mechanism for T-segment navigation. Nucleic Acids Res 37:5908–5916

    Article  CAS  PubMed  Google Scholar 

  50. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    CAS  PubMed  Google Scholar 

  51. Levine C, Hiasa H, Marians KJ (1998) DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 1400:29–43

    CAS  PubMed  Google Scholar 

  52. Schoeffler AJ, Berger JM (2005) Recent advances in understanding structure–function relationships in the type II topoisomerase mechanism. Biochem Soc Trans 33:1465–1470

    Article  CAS  PubMed  Google Scholar 

  53. Kirkegaard K, Wang JC (1981) Mapping the topography of DNA wrapped around gyrase by nucleolytic and chemical probing of complexes of unique DNA sequences. Cell 23:721–729

    Article  CAS  PubMed  Google Scholar 

  54. Liu LF, Wang JC (1978) DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme. Cell 15:979–984

    Article  CAS  PubMed  Google Scholar 

  55. Fisher LM, Mizuuchi K, O’Dea MH, Ohmori H, Gellert M (1981) Site-specific interaction of DNA gyrase with DNA. Proc Natl Acad Sci USA 78:4165–4169

    Article  CAS  PubMed  Google Scholar 

  56. Morrison A, Cozzarelli NR (1981) Contacts between DNA gyrase and its binding site on DNA: features of symmetry and asymmetry revealed by protection from nucleases. Proc Natl Acad Sci USA 78:1416–1420

    Article  CAS  PubMed  Google Scholar 

  57. Peng H, Marians KJ (1995) The interaction of Escherichia coli topoisomerase IV with DNA. J Biol Chem 270:25286–25290

    Article  CAS  PubMed  Google Scholar 

  58. Kampranis SC, Maxwell A (1996) Conversion of DNA gyrase into a conventional type II topoisomerase. Proc Natl Acad Sci USA 93:14416–14421

    Article  CAS  PubMed  Google Scholar 

  59. Sengupta T, Mukherjee M, Mandal C, Das A, Majumder HK (2003) Functional dissection of the C-terminal domain of type II DNA topoisomerase from the kinetoplastid hemoflagellate Leishmania donovani. Nucleic Acids Res 31:5305–5316

    Article  CAS  PubMed  Google Scholar 

  60. Corbett KD, Shultzaberger RK, Berger JM (2004) The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc Natl Acad Sci USA 101:7293–7298

    Article  CAS  PubMed  Google Scholar 

  61. Ruthenburg AJ, Graybosch DM, Huetsch JC, Verdine GL (2005) A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias. J Biol Chem 280:26177–26184

    Article  CAS  PubMed  Google Scholar 

  62. Knight SW, Samuels DS (1999) Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. EMBO J 18:4875–4881

    Article  CAS  PubMed  Google Scholar 

  63. Huang YY, Deng JY, Gu J, Zhang ZP, Maxwell A, Bi LJ, Chen YY, Zhou YF, Yu ZN, Zhang XE (2006) The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA). Nucleic Acids Res 34:5650–5659

    Article  CAS  PubMed  Google Scholar 

  64. Ward D, Newton A (1997) Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Mol Microbiol 26:897–910

    Article  CAS  PubMed  Google Scholar 

  65. Kramlinger VM, Hiasa H (2006) The “GyrA-box” is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction. J Biol Chem 281:3738–3742

    Article  CAS  PubMed  Google Scholar 

  66. Hsieh TJ, Farh L, Huang WM, Chan NL (2004) Structure of the topoisomerase IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator in catalysis. J Biol Chem 279:55587–55593

    Article  CAS  PubMed  Google Scholar 

  67. Vologodskii AV, Zhang W, Rybenkov VV, Podtelezhnikov AA, Subramanian D, Griffith JD, Cozzarelli NR (2001) Mechanism of topology simplification by type II DNA topoisomerases. Proc Natl Acad Sci USA 98:3045–3049

    Article  CAS  PubMed  Google Scholar 

  68. Zechiedrich EL, Khodursky AB, Cozzarelli NR (1997) Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev 11:2580–2592

    Article  CAS  PubMed  Google Scholar 

  69. Zechiedrich EL, Cozzarelli NR (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev 9:2859–2869

    Article  CAS  PubMed  Google Scholar 

  70. Deibler RW, Rahmati S, Zechiedrich EL (2001) Topoisomerase IV, alone, unknots DNA in E. coli. Genes Dev 15:748–761

    Article  CAS  PubMed  Google Scholar 

  71. Belotserkovskii BP, Arimondo PB, Cozzarelli NR (2006) Topoisomerase action on short DNA duplexes reveals requirements for gate and transfer DNA segments. J Biol Chem 281:25407–25415

    Article  CAS  PubMed  Google Scholar 

  72. Witz G, Stasiak A (2009) DNA supercoiling and its role in DNA decatenation and unknotting. Nucleic Acids Res doi:10.1093/nar/gkp1161

  73. Crisona NJ, Cozzarelli NR (2006) Alteration of Escherichia coli topoisomerase IV conformation upon enzyme binding to positively supercoiled DNA. J Biol Chem 281:18927–18932

    Article  CAS  PubMed  Google Scholar 

  74. Martinez-Robles ML, Witz G, Hernandez P, Schvartzman JB, Stasiak A, Krimer DB (2009) Interplay of DNA supercoiling and catenation during the segregation of sister duplexes. Nucleic Acids Res 37:5126–5137

    Article  CAS  PubMed  Google Scholar 

  75. Vologodskii A (2009) Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res 37:3125–3133

    Article  CAS  PubMed  Google Scholar 

  76. Burnier Y, Dorier J, Stasiak A (2008) DNA supercoiling inhibits DNA knotting. Nucleic Acids Res 36:4956–4963

    Article  CAS  PubMed  Google Scholar 

  77. Manjunatha UH, Dalal M, Chatterji M, Radha DR, Visweswariah SS, Nagaraja V (2002) Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. Nucleic Acids Res 30:2144–2153

    Article  CAS  PubMed  Google Scholar 

  78. Rybenkov VV, Ullsperger C, Vologodskii AV, Cozzarelli NR (1997) Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277:690–693

    Article  CAS  PubMed  Google Scholar 

  79. Yan J, Magnasco MO, Marko JF (1999) A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401:932–935

    Article  CAS  PubMed  Google Scholar 

  80. Klenin K, Langowski J, Vologodskii A (2002) Computational analysis of the chiral action of type II DNA topoisomerases. J Mol Biol 320:359–367

    Article  CAS  PubMed  Google Scholar 

  81. Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli NR (2000) Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 14:2881–2892

    Article  CAS  PubMed  Google Scholar 

  82. Stuchinskaya T, Mitchenall LA, Schoeffler AJ, Corbett KD, Berger JM, Bates AD, Maxwell A (2009) How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases. J Mol Biol 385:1397–1408

    Article  CAS  PubMed  Google Scholar 

  83. Buck GR, Zechiedrich EL (2004) DNA disentangling by type-2 topoisomerases. J Mol Biol 340:933–939

    Article  CAS  PubMed  Google Scholar 

  84. Rui S, Tse-Dinh YC (2003) Topoisomerase function during bacterial responses to environmental challenge. Front Biosci 8:d256–d263

    Article  CAS  PubMed  Google Scholar 

  85. Ali JA, Jackson AP, Howells AJ, Maxwell A (1993) The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32:2717–2724

    Article  CAS  PubMed  Google Scholar 

  86. O’Dea MH, Tamura JK, Gellert M (1996) Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. J Biol Chem 271:9723–9729

    Article  PubMed  Google Scholar 

  87. Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351:624–629

    Article  CAS  PubMed  Google Scholar 

  88. Brino L, Urzhumtsev A, Mousli M, Bronner C, Mitschler A, Oudet P, Moras D (2000) Dimerization of Escherichia coli DNA gyrase B provides a structural mechanism for activating the ATPase catalytic center. J Biol Chem 275:9468–9475

    Article  CAS  PubMed  Google Scholar 

  89. Bendsen S, Oestergaard VH, Skouboe C, Brinch M, Knudsen BR, Andersen AH (2009) The QTK loop is essential for the communication between the N-terminal ATPase domain and the central cleavage–ligation region in human topoisomerase IIalpha. Biochemistry 48:6508–6515

    Article  CAS  PubMed  Google Scholar 

  90. data from: Protein knowledge base (UniproKb). www.uniprot.org

  91. Tingey AP, Maxwell A (1996) Probing the role of the ATP-operated clamp in the strand-passage reaction of DNA gyrase. Nucleic Acids Res 24:4868–4873

    Article  CAS  PubMed  Google Scholar 

  92. Kampranis SC, Maxwell A (1998) Conformational changes in DNA gyrase revealed by limited proteolysis. J Biol Chem 273:22606–22614

    Article  CAS  PubMed  Google Scholar 

  93. Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, Dwyer M, Chambers SP, Markland W, Botfield M, Raybuck SA (2003) Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Antimicrob Agents Chemother 47:1037–1046

    Article  CAS  PubMed  Google Scholar 

  94. Williams NL, Maxwell A (1999) Locking the DNA gate of DNA gyrase: investigating the effects on DNA cleavage and ATP hydrolysis. Biochemistry 38:14157–14164

    Article  CAS  PubMed  Google Scholar 

  95. Williams NL, Howells AJ, Maxwell A (2001) Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage. J Mol Biol 306:969–984

    Article  CAS  PubMed  Google Scholar 

  96. Gottler T, Klostermeier D (2007) Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA. J Mol Biol 367:1392–1404

    Article  PubMed  CAS  Google Scholar 

  97. Baird CL, Harkins TT, Morris SK, Lindsley JE (1999) Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci USA 96:13685–13690

    Article  CAS  PubMed  Google Scholar 

  98. Cornish PV, Ha T (2007) A survey of single-molecule techniques in chemical biology. ACS Chem Biol 2:53–61

    Article  CAS  PubMed  Google Scholar 

  99. Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424:338–341

    Article  CAS  PubMed  Google Scholar 

  100. Meglio A, Praly E, Ding F, Allemand JF, Bensimon D, Croquette V (2009) Single DNA/protein studies with magnetic traps. Curr Opin Struct Biol 19:615–622

    Article  CAS  PubMed  Google Scholar 

  101. Gore J, Bryant Z, Stone MD, Nollmann M, Cozzarelli NR, Bustamante C (2006) Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439:100–104

    Article  CAS  PubMed  Google Scholar 

  102. Bates AD (2006) DNA topoisomerases: single gyrase caught in the act. Curr Biol 16:R204–R206

    Article  CAS  PubMed  Google Scholar 

  103. Nollmann M, Stone MD, Bryant Z, Gore J, Crisona NJ, Hong SC, Mitelheiser S, Maxwell A, Bustamante C, Cozzarelli NR (2007) Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nat Struct Mol Biol 14:264–271

    Article  PubMed  CAS  Google Scholar 

  104. Higgins NP (2007) Under DNA stress, gyrase makes the sign of the cross. Nat Struct Mol Biol 14:256–258

    Article  CAS  PubMed  Google Scholar 

  105. Stone MD, Bryant Z, Crisona NJ, Smith SB, Vologodskii A, Bustamante C, Cozzarelli NR (2003) Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci USA 100:8654–8659

    Article  CAS  PubMed  Google Scholar 

  106. Charvin G, Strick TR, Bensimon D, Croquette V (2005) Topoisomerase IV bends and overtwists DNA upon binding. Biophys J 89:384–392

    Article  CAS  PubMed  Google Scholar 

  107. Neuman KC, Charvin G, Bensimon D, Croquette V (2009) Mechanisms of chiral discrimination by topoisomerase IV. Proc Natl Acad Sci USA 106:6986–6991

    Article  CAS  PubMed  Google Scholar 

  108. Charvin G, Bensimon D, Croquette V (2003) Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc Natl Acad Sci USA 100:9820–9825

    Article  CAS  PubMed  Google Scholar 

  109. Gubaev A, Hilbert M, Klostermeier D (2009) The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction. Proc Natl Acad Sci USA 106:13278–13283

    Article  CAS  PubMed  Google Scholar 

  110. Malik M, Nitiss KC, Enriquez-Rios V, Nitiss JL (2006) Roles of nonhomologous end-joining pathways in surviving topoisomerase II-mediated DNA damage. Mol Cancer Ther 5:1405–1414

    Article  CAS  PubMed  Google Scholar 

  111. Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NR (1998) The structure of supercoiled intermediates in DNA replication. Cell 94:819–827

    Article  CAS  PubMed  Google Scholar 

  112. Ullsperger C, Cozzarelli NR (1996) Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J Biol Chem 271:31549–31555

    Article  CAS  PubMed  Google Scholar 

  113. Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    Article  CAS  PubMed  Google Scholar 

  114. Khodursky AB, Peter BJ, Schmid MB, DeRisi J, Botstein D, Brown PO, Cozzarelli NR (2000) Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci USA 97:9419–9424

    Article  CAS  PubMed  Google Scholar 

  115. Tadesse S, Graumann PL (2006) Differential and dynamic localization of topoisomerases in Bacillus subtilis. J Bacteriol 188:3002–3011

    Article  CAS  PubMed  Google Scholar 

  116. Hsu YH, Chung MW, Li TK (2006) Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization. Nucleic Acids Res 34:3128–3138

    Article  CAS  PubMed  Google Scholar 

  117. Chen CR, Malik M, Snyder M, Drlica K (1996) DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol 258:627–637

    Article  CAS  PubMed  Google Scholar 

  118. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3:91

    Article  PubMed  CAS  Google Scholar 

  119. Pohlhaus JR, Kreuzer KN (2005) Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo. Mol Microbiol 56:1416–1429

    Article  CAS  PubMed  Google Scholar 

  120. Malik M, Zhao X, Drlica K (2006) Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol 61:810–825

    Article  CAS  PubMed  Google Scholar 

  121. Abbanat D, Morrow B, Bush K (2008) New agents in development for the treatment of bacterial infections. Curr Opin Pharmacol 8:582–592

    Article  CAS  PubMed  Google Scholar 

  122. Bradbury BJ, Pucci MJ (2008) Recent advances in bacterial topoisomerase inhibitors. Curr Opin Pharmacol 8:574–581

    Article  CAS  PubMed  Google Scholar 

  123. Shea ME, Hiasa H (2000) Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes. J Biol Chem 275:14649–14658

    Article  CAS  PubMed  Google Scholar 

  124. Wentzell LM, Maxwell A (2000) The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. J Mol Biol 304:779–791

    Article  CAS  PubMed  Google Scholar 

  125. Willmott CJ, Critchlow SE, Eperon IC, Maxwell A (1994) The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol 242:351–363

    Article  CAS  PubMed  Google Scholar 

  126. Piddock LJ (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58 Suppl 2:11–8

    Google Scholar 

  127. Yoshida H, Bogaki M, Nakamura M, Nakamura S (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34:1271–1272

    CAS  PubMed  Google Scholar 

  128. Critchlow SE, Maxwell A (1996) DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry 35:7387–7393

    Article  CAS  PubMed  Google Scholar 

  129. Heddle JG, Barnard FM, Wentzell LM, Maxwell A (2000) The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Nucleosides Nucleotides Nucleic Acids 19:1249–1264

    Article  CAS  PubMed  Google Scholar 

  130. Palu G, Valisena S, Ciarrocchi G, Gatto B, Palumbo M (1992) Quinolone binding to DNA is mediated by magnesium ions. Proc Natl Acad Sci USA 89:9671–9675

    Article  CAS  PubMed  Google Scholar 

  131. Dutta S, Kawamura Y, Ezaki T, Nair GB, Iida K, Yoshida S (2005) Alteration in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in Quinolone-resistant Shigella dysenteriae serotype 1 clinical isolates from Kolkata, India. Antimicrob Agents Chemother 49:1660–1661

    Article  CAS  PubMed  Google Scholar 

  132. Hu LF, Li JB, Ye Y, Li X (2007) Mutations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in clinical strains of fluoroquinolone-resistant Shigella in Anhui, China. J Microbiol 45:168–170

    CAS  PubMed  Google Scholar 

  133. Madurga S, Sanchez-Cespedes J, Belda I, Vila J, Giralt E (2008) Mechanism of binding of fluoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance. Chembiochem 9:2081–2086

    Article  CAS  PubMed  Google Scholar 

  134. Rafii F, Park M, Novak JS (2005) Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones. Antimicrob Agents Chemother 49:488–492

    Article  CAS  PubMed  Google Scholar 

  135. Lee JK, Lee YS, Park YK, Kim BS (2005) Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 25:290–295

    Article  CAS  PubMed  Google Scholar 

  136. Cattoir V, Nordmann P (2009) Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr Med Chem 16:1028–1046

    Article  CAS  PubMed  Google Scholar 

  137. Poirel L, Cattoir V, Nordmann P (2008) Is plasmid-mediated quinolone resistance a clinically significant problem? Clin Microbiol Infect 14:295–297

    Article  CAS  PubMed  Google Scholar 

  138. Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640

    Article  CAS  PubMed  Google Scholar 

  139. Peterson LR (2001) Quinolone molecular structure–activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis 33 Suppl 3:S180–186

    Google Scholar 

  140. Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105:559–592

    Article  CAS  PubMed  Google Scholar 

  141. Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D (2008) Novel ofloxacin derivatives: synthesis, antimycobacterial and toxicological evaluation. Bioorg Med Chem Lett 18:1229–1236

    Article  CAS  PubMed  Google Scholar 

  142. Ellsworth EL, Tran TP, Showalter HD, Sanchez JP, Watson BM, Stier MA, Domagala JM, Gracheck SJ, Joannides ET, Shapiro MA, Dunham SA, Hanna DL, Huband MD, Gage JW, Bronstein JC, Liu JY, Nguyen DQ, Singh R (2006) 3-aminoquinazolinediones as a new class of antibacterial agents demonstrating excellent antibacterial activity against wild-type and multidrug resistant organisms. J Med Chem 49:6435–6438

    Article  CAS  PubMed  Google Scholar 

  143. Gomez L, Hack MD, Wu J, Wiener JJ, Venkatesan H, Santillan A Jr, Pippel DJ, Mani N, Morrow BJ, Motley ST, Shaw KJ, Wolin R, Grice CA, Jones TK (2007) Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis. Bioorg Med Chem Lett 17:2723–2727

    Article  CAS  PubMed  Google Scholar 

  144. Pan XS, Gould KA, Fisher LM (2009) Probing the differential interaction of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob Agents Chemother 53:3822–3831

    Article  CAS  PubMed  Google Scholar 

  145. Ramesh E, Manian RD, Raghunathan R, Sainath S, Raghunathan M (2009) Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg Med Chem 17:660–666

    Article  CAS  PubMed  Google Scholar 

  146. Sriram D, Aubry A, Yogeeswari P, Fisher LM (2006) Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg Med Chem Lett 16:2982–2985

    Article  CAS  PubMed  Google Scholar 

  147. Tran TP, Ellsworth EL, Sanchez JP, Watson BM, Stier MA, Showalter HD, Domagala JM, Shapiro MA, Joannides ET, Gracheck SJ, Nguyen DQ, Bird P, Yip J, Sharadendu A, Ha C, Ramezani S, Wu X, Singh R (2007) Structure–activity relationships of 3-aminoquinazolinediones, a new class of bacterial type-2 topoisomerase (DNA gyrase and topo IV) inhibitors. Bioorg Med Chem Lett 17:1312–1320

    Article  CAS  PubMed  Google Scholar 

  148. Wiener JJ, Gomez L, Venkatesan H, Santillan A Jr, Allison BD, Schwarz KL, Shinde S, Tang L, Hack MD, Morrow BJ, Motley ST, Goldschmidt RM, Shaw KJ, Jones TK, Grice CA (2007) Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains. Bioorg Med Chem Lett 17:2718–2722

    Article  CAS  PubMed  Google Scholar 

  149. Fisher LM, Heaton VJ (2003) Dual activity of fluoroquinolones against Streptococcus pneumoniae. J Antimicrob Chemother 51: 463–464; author reply 464–465

    Google Scholar 

  150. Strahilevitz J, Hooper DC (2005) Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob Agents Chemother 49:1949–1956

    Article  CAS  PubMed  Google Scholar 

  151. Cambau E, Matrat S, Pan XS, Roth Dit Bettoni R, Corbel C, Aubry A, Lascols C, Driot JY, Fisher LM (2009) Target specificity of the new fluoroquinolone besifloxacin in Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother 63:443–450

    Article  CAS  PubMed  Google Scholar 

  152. Okumura R, Hirata T, Onodera Y, Hoshino K, Otani T, Yamamoto T (2008) Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and sitafloxacin, against DNA gyrase and topoisomerase IV: contribution to reducing in vitro emergence of quinolone-resistant Streptococcus pneumoniae. J Antimicrob Chemother 62:98–104

    Article  CAS  PubMed  Google Scholar 

  153. Charifson PS, Grillot AL, Grossman TH, Parsons JD, Badia M, Bellon S, Deininger DD, Drumm JE, Gross CH, LeTiran A, Liao Y, Mani N, Nicolau DP, Perola E, Ronkin S, Shannon D, Swenson LL, Tang Q, Tessier PR, Tian SK, Trudeau M, Wang T, Wei Y, Zhang H, Stamos D (2008) Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: intelligent design and evolution through the judicious use of structure-guided design and structure–activity relationships. J Med Chem 51:5243–5263

    Article  CAS  PubMed  Google Scholar 

  154. Cheng J, Thanassi JA, Thoma CL, Bradbury BJ, Deshpande M, Pucci MJ (2007) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of heteroaryl isothiazolones in Staphylococcus aureus. Antimicrob Agents Chemother 51:2445–2453

    Article  CAS  PubMed  Google Scholar 

  155. East SP, White CB, Barker O, Barker S, Bennett J, Brown D, Boyd EA, Brennan C, Chowdhury C, Collins I, Convers-Reignier E, Dymock BW, Fletcher R, Haydon DJ, Gardiner M, Hatcher S, Ingram P, Lancett P, Mortenson P, Papadopoulos K, Smee C, Thomaides-Brears HB, Tye H, Workman J, Czaplewski LG (2009) DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: synthesis and antibacterial activity. Bioorg Med Chem Lett 19:894–899

    Article  CAS  PubMed  Google Scholar 

  156. Robertson GT, Bonventre EJ, Doyle TB, Du Q, Duncan L, Morris TW, Roche ED, Yan D, Lynch AS (2008) In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: studies of the mode of action in Staphylococcus aureus. Antimicrob Agents Chemother 52:2313–2323

    Article  CAS  PubMed  Google Scholar 

  157. Zhi C, Long ZY, Manikowski A, Comstock J, Xu WC, Brown NC, Tarantino PM Jr, Holm KA, Dix EJ, Wright GE, Barnes MH, Butler MM, Foster KA, LaMarr WA, Bachand B, Bethell R, Cadilhac C, Charron S, Lamothe S, Motorina I, Storer R (2006) Hybrid antibacterials. DNA polymerase-topoisomerase inhibitors. J Med Chem 49:1455–1465

    Article  CAS  PubMed  Google Scholar 

  158. Black MT, Stachyra T, Platel D, Girard AM, Claudon M, Bruneau JM, Miossec C (2008) Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother 52:3339–3349

    Article  CAS  PubMed  Google Scholar 

  159. Lewis RJ, Singh OM, Smith CV, Skarzynski T, Maxwell A, Wonacott AJ, Wigley DB (1996) The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J 15:1412–1420

    CAS  PubMed  Google Scholar 

  160. Lamour V, Hoermann L, Jeltsch JM, Oudet P, Moras D (2002) An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J Biol Chem 277:18947–18953

    Article  CAS  PubMed  Google Scholar 

  161. Schechner M, Sirockin F, Stote RH, Dejaegere AP (2004) Functionality maps of the ATP binding site of DNA gyrase B: generation of a consensus model of ligand binding. J Med Chem 47:4373–4390

    Article  CAS  PubMed  Google Scholar 

  162. Ostrov DA, Hernandez Prada JA, Corsino PE, Finton KA, Le N, Rowe TC (2007) Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob Agents Chemother 51:3688–3698

    Article  CAS  PubMed  Google Scholar 

  163. Gradisar H, Pristovsek P, Plaper A, Jerala R (2007) Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J Med Chem 50:264–271

    Article  CAS  PubMed  Google Scholar 

  164. Grossman TH, Bartels DJ, Mullin S, Gross CH, Parsons JD, Liao Y, Grillot AL, Stamos D, Olson ER, Charifson PS, Mani N (2007) Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob Agents Chemother 51:657–666

    Article  CAS  PubMed  Google Scholar 

  165. Hassan GS, Farag NA, Hegazy GH, Arafa RK (2008) Design and synthesis of novel benzopyran-2-one derivatives of expected antimicrobial activity through DNA gyrase-B inhibition. Arch Pharm (Weinheim) 341:725–733

    Article  CAS  Google Scholar 

  166. Mani N, Gross CH, Parsons JD, Hanzelka B, Muh U, Mullin S, Liao Y, Grillot AL, Stamos D, Charifson PS, Grossman TH (2006) In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class. Antimicrob Agents Chemother 50:1228–1237

    Article  CAS  PubMed  Google Scholar 

  167. Miller AA, Bundy GL, Mott JE, Skepner JE, Boyle TP, Harris DW, Hromockyj AE, Marotti KR, Zurenko GE, Munzner JB, Sweeney MT, Bammert GF, Hamel JC, Ford CW, Zhong WZ, Graber DR, Martin GE, Han F, Dolak LA, Seest EP, Ruble JC, Kamilar GM, Palmer JR, Banitt LS, Hurd AR, Barbachyn MR (2008) Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 52:2806–2812

    Article  CAS  PubMed  Google Scholar 

  168. Oblak M, Grdadolnik SG, Kotnik M, Poterszman A, Atkinson RA, Nierengarten H, Desplancq D, Moras D, Solmajer T (2006) Biophysical characterization of an indolinone inhibitor in the ATP-binding site of DNA gyrase. Biochem Biophys Res Commun 349:1206–1213

    Article  CAS  PubMed  Google Scholar 

  169. Oblak M, Kotnik M, Solmajer T (2007) Discovery and development of ATPase inhibitors of DNA gyrase as antibacterial agents. Curr Med Chem 14:2033–2047

    Article  CAS  PubMed  Google Scholar 

  170. Tanitame A, Oyamada Y, Ofuji K, Fujimoto M, Suzuki K, Ueda T, Terauchi H, Kawasaki M, Nagai K, Wachi M, Yamagishi J (2004) Synthesis and antibacterial activity of novel and potent DNA gyrase inhibitors with azole ring. Bioorg Med Chem 12:5515–5524

    Article  CAS  PubMed  Google Scholar 

  171. Hashimi SM, Wall MK, Smith AB, Maxwell A, Birch RG (2007) The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:181–187

    Article  CAS  PubMed  Google Scholar 

  172. Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A (2007) The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89:500–507

    Article  CAS  PubMed  Google Scholar 

  173. Pierrat OA, Maxwell A (2005) Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase. Biochemistry 44:4204–4215

    Article  CAS  PubMed  Google Scholar 

  174. Sengupta S, Nagaraja V (2008) YacG from Escherichia coli is a specific endogenous inhibitor of DNA gyrase. Nucleic Acids Res 36:4310–4316

    Article  CAS  PubMed  Google Scholar 

  175. Simic M, De Jonge N, Loris R, Vesnaver G, Lah J (2009) Driving forces of gyrase recognition by the addiction toxin CcdB. J Biol Chem 284:20002–20010

    Article  CAS  PubMed  Google Scholar 

  176. Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA 83:3116–3120

    Article  CAS  PubMed  Google Scholar 

  177. Smith AB, Maxwell A (2006) A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site. Nucleic Acids Res 34:4667–4676

    Article  CAS  PubMed  Google Scholar 

  178. De Jonge N, Buts L, Vangelooven J, Mine N, Van Melderen L, Wyns L, Loris R (2007) Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:356–360

    Article  PubMed  CAS  Google Scholar 

  179. Trovatti E, Cotrim CA, Garrido SS, Barros RS, Marchetto R (2008) Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases. Bioorg Med Chem Lett 18:6161–6164

    Article  CAS  PubMed  Google Scholar 

  180. Oppegard LM, Hamann BL, Streck KR, Ellis KC, Fiedler HP, Khodursky AB, Hiasa H (2009) In vivo and in vitro patterns of the activity of simocyclinone D8, an angucyclinone antibiotic from Streptomyces antibioticus. Antimicrob Agents Chemother 53:2110–2119

    Article  CAS  PubMed  Google Scholar 

  181. Sadiq AA, Patel MR, Jacobson BA, Escobedo M, Ellis K, Oppegard LM, Hiasa H, Kratzke RA (2010) Anti-proliferative effects of simocyclinone D8 (SD8), a novel catalytic inhibitor of topoisomerase II. Invest New Drugs 28:20–25

    Article  CAS  PubMed  Google Scholar 

  182. Flatman RH, Howells AJ, Heide L, Fiedler HP, Maxwell A (2005) Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action. Antimicrob Agents Chemother 49:1093–1100

    Article  CAS  PubMed  Google Scholar 

  183. Sissi C, Vazquez E, Chemello A, Mitchenall LA, Maxwell A, Palumbo M (2010) Mapping simocyclinone D8 interaction with DNA gyrase: evidence for a new binding site on GyrB. Antimicrob Agents Chemother 54:213–220

    Article  CAS  PubMed  Google Scholar 

  184. Edwards MJ, Flatman RH, Mitchenall LA, Stevenson CE, Le TB, Clarke TA, McKay AR, Fiedler HP, Buttner MJ, Lawson DM, Maxwell A (2009) A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science 326:1415–1418

    Article  CAS  PubMed  Google Scholar 

  185. Ahmed A, Sharma YD (2008) Ribozyme cleavage of Plasmodium falciparum gyrase A gene transcript affects the parasite growth. Parasitol Res 103:751–763

    Article  PubMed  Google Scholar 

  186. Rao SS, Savithri HS, Raghunathan M (2008) Down regulation of gyrase A gene expression in E. coli by antisense ribozymes using RT-PCR. Mol Biol Rep 35:575–578

    Article  CAS  PubMed  Google Scholar 

  187. Dorman CJ, Corcoran CP (2009) Bacterial DNA topology and infectious disease. Nucleic Acids Res 37:672–678

    Article  CAS  PubMed  Google Scholar 

  188. Smart DJ (2008) Genotoxicity of topoisomerase II inhibitors: an anti-infective perspective. Toxicology 254:192–198

    Article  CAS  PubMed  Google Scholar 

  189. Walsh CT (2002) Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chembiochem 3:125–134

    Article  PubMed  Google Scholar 

  190. Heide L (2009) Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins. Biotechnol Adv 27:1006–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by AIRC, Associazione Italiana per la Ricerca sul Cancro (MP) (Grant #. 5826) and University of Padova (CS) (Grant # CPDA078422/07). The authors thank Susan Paris for expert proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manlio Palumbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sissi, C., Palumbo, M. In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell. Mol. Life Sci. 67, 2001–2024 (2010). https://doi.org/10.1007/s00018-010-0299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0299-5

Keywords

Navigation