Skip to main content
Log in

Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC–MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AT:

3-Aminotriazole

ELIP:

Early light-inducible genes/proteins

GABA:

γ-Aminobutyric acid

HSP:

Heat shock genes/proteins

LEA:

Late embryogenesis abundant genes/proteins

NGS:

Next-generation sequencing

RFO:

Raffinose family oligosaccharides

ROS:

Reactive oxygen species

RWC:

Relative water content

References

  1. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  2. Black M, Pritchard HW (2002) Desiccation and survival in plants. Drying without dying. CABI Publishing, UK

    Book  Google Scholar 

  3. Proctor MC, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  4. Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  PubMed  CAS  Google Scholar 

  5. Porembski S (2011) Evolution, diversity and habitats of poikilohydrous plants. In: Luttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 139–156

    Chapter  Google Scholar 

  6. Farrant J, Brandt W, Lidsey GG (2007) An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1:72–84

    Google Scholar 

  7. Martinelli T, Whittaker A, Masclaux-Daubresse C, Farrant JM, Brilli F, Loreto F, Vazzana C (2007) Evidence for the presence of photorespiration in desiccation-sensitive leaves of the C4 ‘resurrection’ plant Sporobolus stapfianus during dehydration stress. J Exp Bot 58:3929–3939

    Article  PubMed  CAS  Google Scholar 

  8. Proctor MC, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51:1695–1704

    Article  PubMed  CAS  Google Scholar 

  9. Phillips JR, Fischer E, Baron M, van den DN, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54:938–948

    Article  PubMed  CAS  Google Scholar 

  10. Dinakar C, Djilianov D, Bartels D (2012) Photosynthesis in desiccation-tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182:29–41

    Article  PubMed  CAS  Google Scholar 

  11. Gechev T, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci. doi:10.1007/s00018-012-1088-0

    Google Scholar 

  12. Norwood M, Truesdale MR, Richter A, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J Exp Bot 51:159–165

    Article  PubMed  CAS  Google Scholar 

  13. Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359

    Article  Google Scholar 

  14. Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    Article  PubMed  CAS  Google Scholar 

  15. Moore JP, Westall KL, Ravenscroft N, Farrant J, Lindsey GG, Brandt W (2005) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5-tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem J 385:301–308

    Article  PubMed  CAS  Google Scholar 

  16. Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BW, Cushman JC (2011) A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23:1231–1248

    Article  PubMed  CAS  Google Scholar 

  17. Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099

    Article  PubMed  CAS  Google Scholar 

  18. Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Joudi M, Peshev D, Van den Ende W (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13:767–776

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez MC, Edsgard D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J (2010) Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228

    Article  PubMed  CAS  Google Scholar 

  20. Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709

    Article  PubMed  CAS  Google Scholar 

  21. Lenne T, Bryant G, Hocart CH, Huang CX, Ball MC (2010) Freeze avoidance: a dehydrating moss gathers no ice. Plant Cell Environ 33:1731–1741

    Article  PubMed  CAS  Google Scholar 

  22. Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185–1197

    Article  PubMed  CAS  Google Scholar 

  23. Gechev T, Willekens H, Van MM, Inzé D, Van CW, Toneva V, Minkov I (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160:509–515

    Article  PubMed  CAS  Google Scholar 

  24. Gechev T, Gadjev I, Van BF, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714

    Article  PubMed  CAS  Google Scholar 

  25. Qureshi MK, Rdeva V, Genkov T, Minkov I, Hille J, Gechev T (2011) Isolation and characterization of mutants with enhanced tolerance to oxidative stress. Acta Physiol Plant 33:375–382

    Article  CAS  Google Scholar 

  26. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

  27. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed  CAS  Google Scholar 

  28. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  CAS  Google Scholar 

  29. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  30. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  PubMed  CAS  Google Scholar 

  31. Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24:732–737

    Article  PubMed  CAS  Google Scholar 

  32. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  33. Tohge T, Fernie AR (2010) Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 5:1210–1227

    Article  PubMed  CAS  Google Scholar 

  34. Tohge T, Fernie AR (2009) Web-based resources for mass-spectrometry-based metabolomics: a user’s guide. Phytochemistry 70:450–456

    Article  PubMed  CAS  Google Scholar 

  35. Ebrahimi SN, Gafner F, Dell’Acqua G, Schweikert K, Hamburger M (2011) Flavone 8-CGlycosides from Haberlea rhodopensis FRIV. (Gesneriaceae). Helv Chim Acta 94:38–45

    Article  CAS  Google Scholar 

  36. Harborne JB (1967) Comparative biochemistry of flavonoids-VI: flavonoid patterns in the Bignoniaceae and the Gesneriaceae. Phytochemistry 6:1643–1651

    Article  CAS  Google Scholar 

  37. Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  PubMed  CAS  Google Scholar 

  38. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109

    Article  Google Scholar 

  39. Antonio C, Pinheiro C, Chaves MM, Ricardo CP, Ortuno MF, Thomas-Oates J (2008) Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 1187:111–118

    Article  PubMed  CAS  Google Scholar 

  40. Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926

    Article  PubMed  CAS  Google Scholar 

  41. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  42. Gechev TS, Minkov IN, Hille J (2005) Hydrogen peroxide-induced cell death in Arabidopsis: transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life 57:181–188

    Article  PubMed  CAS  Google Scholar 

  43. Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed  CAS  Google Scholar 

  44. Marino D, Gonzalez EM, Frendo P, Puppo A, Arrese-Igor C (2007) NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+-dependent isocitrate dehydrogenase. Planta 225:413–421

    Article  PubMed  CAS  Google Scholar 

  45. Rohrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8:3548–3560

    Article  PubMed  Google Scholar 

  46. Renault H, El AA, Palanivelu R, Updegraff EP, Yu A, Renou JP, Preuss D, Bouchereau A, Deleu C (2011) GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol 52:894–908

    Article  PubMed  CAS  Google Scholar 

  47. Renault H, Roussel V, El AA, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    Article  PubMed  Google Scholar 

  48. Van Sandt VS, Suslov D, Verbelen JP, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473

    Article  PubMed  Google Scholar 

  49. Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174

    Article  PubMed  CAS  Google Scholar 

  50. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    Article  PubMed  CAS  Google Scholar 

  51. Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20:3122–3135

    Article  PubMed  CAS  Google Scholar 

  52. Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  PubMed  CAS  Google Scholar 

  53. Ingle RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N (2008) Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast-chloroplast transition. Plant Cell Environ 31:1813–1824

    Article  PubMed  CAS  Google Scholar 

  54. Proctor MC, Ligrone R, Duckett JG (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Article  CAS  Google Scholar 

  55. Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    Article  PubMed  CAS  Google Scholar 

  56. Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Func Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  57. Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345

    Article  PubMed  CAS  Google Scholar 

  58. Alamillo JM, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci 160:1161–1170

    Article  PubMed  CAS  Google Scholar 

  59. Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  PubMed  CAS  Google Scholar 

  60. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van MM, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  61. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  62. Dinakar C, Bartels D (2012) Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta 236:541–555

    Article  PubMed  CAS  Google Scholar 

  63. Alcazar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    Article  PubMed  CAS  Google Scholar 

  64. Norwood M, Truesdale MR, Richter A, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J Exp Bot 51:159–165

    Article  PubMed  CAS  Google Scholar 

  65. Farrant J, Pammenter NW, Berjak P, Walters C (1997) Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Sci Res 7:135–144

    Article  CAS  Google Scholar 

  66. Norwood M, Toldi O, Richter A, Scott P (2003) Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress. J Exp Bot 54:2313–2321

    Article  PubMed  CAS  Google Scholar 

  67. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  PubMed  CAS  Google Scholar 

  68. Zuther E, Buchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG (2004) The role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS Lett 576:169–173

    Article  PubMed  CAS  Google Scholar 

  69. Korn M, Peterek S, Mock HP, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:813–827

    Article  PubMed  CAS  Google Scholar 

  70. Lugan R, Niogret MF, Kervazo L, Larher FR, Kopka J, Bouchereau A (2009) Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ 32:95–108

    Article  PubMed  CAS  Google Scholar 

  71. Jones L, McQueen-Mason S (2004) A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559:61–65

    Article  PubMed  CAS  Google Scholar 

  72. Moore JP, Farrant JM, Driouich A (2008) A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress. Plant Signal Behav 3:102–104

    Article  PubMed  Google Scholar 

  73. Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt W, Lerouge P, Farrant J, Driouich A (2006) Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol 141:651–662

    Article  PubMed  CAS  Google Scholar 

  74. Wang L, Shang H, Liu Y, Zheng M, Wu R, Phillips J, Bartels D, Deng X (2009) A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. Plant Biol 11:837–848

    Article  PubMed  CAS  Google Scholar 

  75. Vicre M, Lerouxel O, Farrant J, Lerouge P, Driouich A (2004) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120:229–239

    Article  PubMed  CAS  Google Scholar 

  76. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  77. Van Den Dries N, Facchinelli F, Giarola V, Phillips JR, Bartels D (2011) Comparative analysis of LEA-like 11–24 gene expression and regulation in related plant species within the Linderniaceae that differ in desiccation tolerance. New Phytol 190:75–88

    Article  Google Scholar 

  78. Oliver MJ, Hudgeons J, Dowd SE, Payton PR (2009) A combined subtractive suppression hybridization and expression profiling strategy to identify novel desiccation response transcripts from Tortula ruralis gametophytes. Physiol Plant 136:437–460

    Article  PubMed  CAS  Google Scholar 

  79. Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89

    Article  PubMed  Google Scholar 

  80. Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154:373–390

    Article  PubMed  CAS  Google Scholar 

  81. Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  PubMed  CAS  Google Scholar 

  82. Liu X, Wang Z, Wang L, Wu R, Phillips J, Deng X (2009) LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci 176:90–98

    Article  CAS  Google Scholar 

  83. Rodrigo MJ, Bockel C, Blervacq AS, Bartels D (2004) The novel gene CpEdi-9 from the resurrection plant C. plantagineum encodes a hydrophilic protein and is expressed in mature seeds as well as in response to dehydration in leaf phloem tissues. Planta 219:579–589

    Article  PubMed  CAS  Google Scholar 

  84. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21:1607–1619

    Article  PubMed  CAS  Google Scholar 

  85. Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schultke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  PubMed  CAS  Google Scholar 

  86. Charron JB, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028

    Article  PubMed  CAS  Google Scholar 

  87. Levesque-Tremblay G, Havaux M, Ouellet F (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J 60:691–702

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to N. Mehterov and V. Baev for technical support. This work was financially supported by National Science Fund of Bulgaria (grant DO02-071) and EC FP7 (project BioSupport, 245588); ASM gratefully acknowledges studentship support from the UK BBSRC. Author contributions are as follows: TG designed the research; TG, MB, TO, TT, SN, IM, RT, AM, EB, JTO, CA, JS, BMR, ARF, and VT performed the research and/or analyzed the data; TG, TO, JH, BMR, and ARF wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsanko S. Gechev.

Additional information

T. S. Gechev and M. Benina contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_1155_MOESM1_ESM.xlsx

Supplementary material 1 (XLSX 25301 kb) Supplemental Table 1 List of all expressed sequence contigs (ESC) and their sequences as obtained by NGS and the expression of all ESC in unstressed controls, drought-stressed, desiccated, and rehydrated plants

18_2012_1155_MOESM2_ESM.xls

Supplementary material 2 (XLS 50 kb) Supplemental Table 2 QRT-PCR verification of the expression pattern of selected genes chosen from the NGS analysis

18_2012_1155_MOESM3_ESM.xlsx

Supplementary material 3 (XLSX 11 kb) Supplemental Table 3 Expression patterns of the 25 most abundant H. rhodopensis transcripts under normal conditions, drought stress, desiccation, and rehydration

18_2012_1155_MOESM4_ESM.xlsx

Supplementary material 4 (XLSX 51 kb) Supplemental Table 4 Genes highly regulated by drought, desiccation, and rehydration

18_2012_1155_MOESM5_ESM.xls

Supplementary material 5 (XLS 75 kb) Supplemental Table 5 Expression pattern of Haberlea rhodopensis antioxidant genes under normal conditions, drought stress, desiccation, and rehydration

18_2012_1155_MOESM6_ESM.xls

Supplementary material 6 (XLS 124 kb) Supplemental Table 6 Metabolites in Haberlea rhodopensis during water deficiency and subsequent rehydration

18_2012_1155_MOESM7_ESM.pdf

Supplementary material 7 (PDF 15 kb) Supplemental Fig. 1 Cluster analysis of the four growth conditions based on the next-generation sequence (NGS) transcriptome data. T1, unstressed controls; T2, drought stress; T3, desiccation; T4, rehydration. The intensity of the color corresponds to similarity in gene expression. Unstressed controls cluster with rehydrated plants (T1 and T4) while drought-stressed and desiccated plants cluster together (T2 and T3)

18_2012_1155_MOESM8_ESM.pdf

Supplementary material 8 (PDF 75 kb) Supplemental Fig. 2 Principal component analysis (PCA) of the abundance of Haberlea rhodopensis metabolites identified in the four growth conditions. Red, well-watered controls; green, mild drought stress; light blue, severe desiccation; dark blue, rehydration. Unstressed controls group with rehydrated plants while drought-stressed and desiccated plants group together

18_2012_1155_MOESM9_ESM.tif

Supplementary material 9 (TIFF 16469 kb) Supplemental Fig. 3 Heat map of 72 secondary metabolites identified in Haberlea rhodopensis grown under optimal condition (unstressed control), drought stress, desiccation, and rehydration. The data are normalized by dry weight. Blue and red colors indicate decrease and increase in metabolite abundances, respectively. Data are means from six biological replicates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gechev, T.S., Benina, M., Obata, T. et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis . Cell. Mol. Life Sci. 70, 689–709 (2013). https://doi.org/10.1007/s00018-012-1155-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1155-6

Keywords

Navigation