Skip to main content

Advertisement

Log in

Focus on molecular events in the anterior chamber leading to glaucoma

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Primary open-angle glaucoma is a multifactorial disease that affects the retinal ganglion cells, but currently its therapy is to lower the eye pressure. This indicates a definite involvement of the trabecular meshwork, key region in the pathogenesis of glaucoma. This is the first target of glaucoma, and its functional complexity is a real challenge to search. Its functions are those to allow the outflow of aqueous humor and not the reflux. This article describes the morphological and functional changes that happen in anterior chamber. The “primus movens” is oxidative stress that affects trabecular meshwork, particularly its endothelial cells. In these develops a real mitochondriopaty. This leads to functional impotence, the trabecular meshwork altering both motility and cytoarchitecture. Its cells die by apoptosis, losing barrier functions and altering the aqueous humor outflow. All the morphological alterations occur that can be observed under a microscope. Intraocular pressure rises and the malfunctioning trabecular meshwork endotelial cells express proteins that completely alter the aqueous humor. This is a liquid whose functional proteomics complies with the conditions of the trabecular meshwork. Indeed, in glaucoma, it is possible detect the presence of proteins which testify to what occurs in the anterior chamber. There are six classes of proteins which confirm the vascular endothelium nature of the anterior chamber and are the result of the morphofunctional trabecular meshwork decay. It is possible that, all or in part, these proteins can be used as a signal to the posterior pole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

8-OHdg:

8-Hydroxydeoxyguanosine

AC:

Anterior chamber

AF:

Actin microfilaments

AH:

Aqueous humor

ECM:

Extracellular matrix

ELAM-1:

Endothelial leukocyte adhesion molecule-1

GSH:

Reduced glutathione

IF:

Intermediate filaments

IL:

Interleukin

JCT:

Juxtacanalicular connective tissue

MT:

Microtubules

mtDNA:

Mitochondrial DNA

NO:

Nitric oxide

ONH:

Optic nerve head

POAG:

Primary open-angle glaucoma

RGCs:

Retinal ganglion cells

RNFL:

Retinal nerve fibre layer

ROS:

Reactive oxygen species

SCS:

Suprachoroidal space

SOD:

Superoxide dismutase

TM:

Trabecular meshwork

UV:

Ultra violet radiation

References

  1. Shields M, Ritch R, Krupin T (1996) Classifications of the glaucomas. In: Ritch R, Shields M, Krupin T (eds) The glaucomas, vol 2. Mosby, St Louis, pp 717–725

    Google Scholar 

  2. Leske MC (2007) Open-angle glaucoma: an epidemiologic overview. Ophthalmic Epidemiol 14:166–172

    PubMed  Google Scholar 

  3. Saccà SC, Izzotti A (2008) Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res 173:385–407

    PubMed  Google Scholar 

  4. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC et al (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179:1523–1537

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gupta N, Ang LC, Noël de Tilly L, Bidaisee L, Yücel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90:674–678

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720

    PubMed  Google Scholar 

  7. Izzotti A, Bagnis A, Saccà SC (2006) The role of oxidative stress in glaucoma. Mutat Res 12:105–114

    Google Scholar 

  8. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed Central  PubMed  Google Scholar 

  9. Sée V, Loeffler JP (2001) Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem 276:35049–35059

    PubMed  Google Scholar 

  10. Saccà SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123:458–463

    PubMed  Google Scholar 

  11. Nakazawa T, Nakazawa C, Matsubara A, Noda K2, Hisatomi T (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

  12. Weber AJ, Harman CD (2005) Structure–function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 46:3197–3207

    PubMed Central  PubMed  Google Scholar 

  13. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384

    CAS  PubMed  Google Scholar 

  14. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165

    CAS  PubMed  Google Scholar 

  15. Brandt SK, Weatherly ME, Ware L, Linn DM, Linn CL (2011) Calcium preconditioning triggers neuroprotection in retinal ganglion cells. Neuroscience 172:387–397

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Izzotti A, Saccà SC, Longobardi M, Cartiglia C (2010) Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol 128:724–730

    CAS  PubMed  Google Scholar 

  17. Band LR, Hall CL, Richardson G, Jensen OE, Siggers JH, Foss AJ (2009) Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma. Invest Ophthalmol Vis Sci 50:3750–3758

    PubMed  Google Scholar 

  18. Johnson EC, Morrison JC (2009) Friend or foe? Resolving the impact of glial responses in glaucoma. J Glaucoma 18:341–353

    PubMed Central  PubMed  Google Scholar 

  19. Izzotti A, Saccà SC, Cartiglia C, De Flora S (2003) Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med 114:638–646

    CAS  PubMed  Google Scholar 

  20. Saccà SC, Izzotti A, Rossi P, Traverso C (2007) Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84:389–399

    PubMed  Google Scholar 

  21. Flammer J (1994) The vascular concept of glaucoma. Surv Ophthalmol 38:3–6

    Google Scholar 

  22. Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57

    CAS  PubMed  Google Scholar 

  23. Flammer J, Orgul S (1998) Optic nerve blood flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289

    CAS  PubMed  Google Scholar 

  24. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387

    PubMed  Google Scholar 

  25. Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR (2011) Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 93:4–12

    CAS  PubMed  Google Scholar 

  26. Gerometta R, Escobar D, Candia OA (2011) An hypothesis on pressure transmission from anterior chamber to optic nerve. Med Hypotheses 77:827–831

    PubMed Central  PubMed  Google Scholar 

  27. Dan J, Belyea D, Gertner G, Leshem I, Lusky M, Miskin R (2005) Plasminogen activator inhibitor-1 in the aqueous humor of patients with and without glaucoma. Arch Ophthalmol 123:220–224

    CAS  PubMed  Google Scholar 

  28. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A et al (2010) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 42:906–909

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lütjen-Drecoll E (2005) Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res 81:1–4

    PubMed  Google Scholar 

  30. Zhong Y, Wang J, Luo X (2013) Integrins in trabecular meshwork and optic nerve head: possible association with the pathogenesis of glaucoma. Biomed Res Int 2013:202905

    PubMed Central  PubMed  Google Scholar 

  31. Kernt M, Neubauer AS, Eibl KH, Wolf A, Ulbig MW et al (2010) Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2. Clin Ophthalmol 4:591–604

    PubMed Central  PubMed  Google Scholar 

  32. Steely HT Jr, English-Wright SL, Clark AF (2000) The similarity of protein expression in trabecular meshwork and lamina cribrosa: implications for glaucoma. Exp Eye Res 70:17–30

    CAS  PubMed  Google Scholar 

  33. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bagchi K, Puri S (1998) Free radicals and antioxidants in health and disease. East Mediterr Health 4:350–360

    Google Scholar 

  35. Saccà SC, Bolognesi C, Battistella A, Bagnis A, Izzotti A (2009) Gene-environment interactions in ocular diseases. Mutat Res 667:98–117

    PubMed  Google Scholar 

  36. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    CAS  PubMed  Google Scholar 

  37. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    CAS  PubMed  Google Scholar 

  38. Genestra M (2007) Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal 19:1807–1819

    CAS  PubMed  Google Scholar 

  39. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  40. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410:195–213

    CAS  PubMed  Google Scholar 

  41. Mann RM, Riva CE, Stone RA, Barnes GE, Cranstoun SD (1995) Nitric oxide and choroidal blood flow regulation. Invest Ophthalmol Vis Sci 36:925–930

    CAS  PubMed  Google Scholar 

  42. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    CAS  PubMed  Google Scholar 

  43. Nathanson JA, McKee M (1995) Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci 36:1774–1784

    CAS  PubMed  Google Scholar 

  44. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Virag L, Szabo E, Gergely P, Szabo C (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141:113–124

    PubMed  Google Scholar 

  46. Ghafourifar P, Schenk U, Klein SD, Richter C (1999) Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274:31185–31188

    CAS  PubMed  Google Scholar 

  47. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y et al (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    CAS  PubMed  Google Scholar 

  48. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    CAS  PubMed  Google Scholar 

  49. Li G, Luna C, Liton PB, Navarro I, Epstein DL, Gonzalez P (2007) Sustained stress response after oxidative stress in trabecular meshwork cells. Mol Vis 13:2282–2288

    PubMed Central  PubMed  Google Scholar 

  50. Liton PB, Luna C, Bodman M, Hong A, Epstein DL, Gonzalez P (2005) Induction of IL-6 expression by mechanical stress in the trabecular meshwork. Biochem Biophys Res Commun 337:1229–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Liton PB, Luna C, Challa P, Epstein DL, Gonzalez P (2006) Genomewide: expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. Mol Vis 12:774–790

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    CAS  PubMed  Google Scholar 

  53. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    CAS  PubMed  Google Scholar 

  54. Novalija E, Kevin LG, Camara AK, Bosnjak ZJ, Kampine JP et al (2003) Reactive oxygen species precede the epsilon isoform of protein kinase C in the anesthetic preconditioning signaling cascade. Anesthesiology 99:421–428

    CAS  PubMed  Google Scholar 

  55. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R et al (2003) Glutamine synthase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    CAS  PubMed  Google Scholar 

  56. Coca-Prados M, Ghosh S (2008) Functional modulators linking inflow with outflow of aqueous humor. In: Mortimer C (ed) Current topics in membranes, Edition 2. Elsevier, Amsterdam, pp 123–160

  57. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    CAS  PubMed  Google Scholar 

  58. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kadenbach B, Ramzan R, Vogt S (2009) Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 15:139–147

    CAS  PubMed  Google Scholar 

  60. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    CAS  PubMed  Google Scholar 

  61. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM et al (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616

    CAS  PubMed  Google Scholar 

  62. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of ageing. Proc Natl Acad Sci USA 90:7915–7922

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Yakes FM, van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Izzotti A (2009) Gene environment interactions in noncancer degenerative diseases. Mutat Res Fundam Mol Mech Mutagen 667:1–3

    CAS  Google Scholar 

  65. Izzotti A, Longobardi M, Cartiglia C, Saccà SC (2011) Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS ONE 6:e14567

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Morris MA (1990) Mitochondrial mutations in neuro-ophthalmological diseases. A review. J Clin Neuroophthalmol 10:159–166

    CAS  PubMed  Google Scholar 

  67. Hayakawa M, Hattori K, Sugiyama S, Ozawa T (1992) Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189:979–985

    CAS  PubMed  Google Scholar 

  68. Lascaratos G, Garway-Heath DF, Willoughby CE, Chau KY, Schapira AH (2012) Mitochondrial dysfunction in glaucoma: understanding genetic influences. Mitochondrion 12:202–212

    CAS  PubMed  Google Scholar 

  69. Kujoth GC, Hiona A, Pugh TD (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    CAS  PubMed  Google Scholar 

  70. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686

    Google Scholar 

  71. Izzotti A, Longobardi M, Cartiglia C, Saccà SC (2010) Proteome alterations in primary open angle glaucoma aqueous humor. J Proteome Res 9:4831–4838

    CAS  PubMed  Google Scholar 

  72. He Y, Leung KW, Zhang YH, Duan S, Zhong XF, Jiang RZ, Peng Z, Tombran-Tink J, Ge J (2008) Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49:1447–1458

    PubMed  Google Scholar 

  73. Zhou L, Li Y, Yue BY (1999) Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from an ocular tissue: the trabecular meshwork. J Cell Physiol 180:182–189

    CAS  PubMed  Google Scholar 

  74. Costarides AP, Riley MV, Green K (1991) Roles of catalase and the glutathione redox cycle in the regulation of the anterior-chamber hydrogen peroxide. Ophthalmic Res 23:284–294

    CAS  PubMed  Google Scholar 

  75. Gherghel D, Griffiths HR, Hilton EJ, Cunliffe IA, Hosking SL (2005) Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 46:877–883

    PubMed  Google Scholar 

  76. Izzotti A, Saccà SC, Longobardi M, Cartiglia C (2009) Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci 50:5251–5258

    PubMed  Google Scholar 

  77. Izzotti A, Longobardi M, Ratschuller F, Cartiglia C, Saccà SC (2011) Trabecular meshwork gene expression after selective laser trabeculoplasty (TGF). Plos ONE 6:E2010

    Google Scholar 

  78. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    CAS  PubMed  Google Scholar 

  79. Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137:62–69

    CAS  PubMed  Google Scholar 

  80. Alvarado JA, Murphy CG, Polansky JR, Juster R (1981) Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21:714–727

    CAS  PubMed  Google Scholar 

  81. Alvarado J, Murphy C, Polansky J, Juster R (1984) Studies on pathogenesis of primary open angle glaucoma: regional analyses of trabecular meshwork cellularity and dense collagen. In: Ticho U, David R (eds) Recent advances in glaucoma. Elsevier, Amsterdam, pp 3–8

    Google Scholar 

  82. Alvarado JA, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91:564–579

    CAS  PubMed  Google Scholar 

  83. Shimmura S, Suematsu M, Shimoyama M, Tsubota K, Oguchi Y et al (1996) Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin. Exp Eye Res 63:519–526

    CAS  PubMed  Google Scholar 

  84. Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125

    CAS  PubMed  Google Scholar 

  85. Saccà SC, Roszkowska AM, Izzotti A (2013) Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 752:153–171

    PubMed  Google Scholar 

  86. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    CAS  PubMed  Google Scholar 

  87. Wei H, Ca Q, Rahn R, Zhang X, Wang Y, Lebwohl M (1998) DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage. Biochemistry 37:6485–6490

    CAS  PubMed  Google Scholar 

  88. Balansky RM, Izzotti A, D’Agostini F, Camoirano A, Bagnasco M et al (2003) Systemic genotoxic effects produced by light, and synergism with cigarette smoke in the respiratory tract of hairless mice. Carcinogenesis 24:1525–1532

    CAS  PubMed  Google Scholar 

  89. Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol 90:237–241

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kanan Y, Moiseyev G, Agarwal N, Ma JX, Al-Ubaidi MR (2007) Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Invest Ophthalmol Vis Sci 48:40–51

    PubMed  Google Scholar 

  91. Buron N, Micheau O, Cathelin S, Lafontaine PO, Creuzot-Garcher C et al (2006) Differential mechanisms of conjunctival cell death induction by ultraviolet irradiation and benzalkonium chloride. Invest Ophthalmol Vis Sci 47:4221–4230

    PubMed  Google Scholar 

  92. De Flora S, Izzotti A, Randerath K, Randerath E, Bartsch H et al (1996) DNA adducts and chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine. Mutat Res 366:197–238

    PubMed  Google Scholar 

  93. Chandler HL, Reuter KS, Sinnott LT, Nichols JJ (2010) Prevention of UV-induced damage to the anterior segment using class I UV-absorbing hydrogel contact lenses. Invest Ophthalmol Vis Sci 51:172–178

    PubMed  Google Scholar 

  94. Linsenmayer TF, Cai CX, Millholland JM, Beazley KE, Fitch JM (2005) Nuclear ferritin in corneal epithelial cells: tissue-specific nuclear transport and protection from UV-damage. Prog Retin Eye Res 24:139–159

    CAS  PubMed  Google Scholar 

  95. Suh MH, Kwon JW, Wee WR, Han YK, Kim JH et al (2008) Protective effect of ascorbic Acid against corneal damage by ultraviolet B irradiation: a pilot study. Cornea 27:916–922

    PubMed  Google Scholar 

  96. Araie M, Shirasawa E, Hikita M (1988) Effect of oxidized glutathione on the barrier function of the corneal endothelium. Invest Ophthalmol Vis Sci 29:1884–1887

    CAS  PubMed  Google Scholar 

  97. Brancato R, Fiore T, Papucci L, Schiavone N, Formigli L et al (2002) Concomitant effect of topical ubiquinone Q10 and vitamin E to prevent keratocyte apoptosis after excimer laser photoablation in rabbits. J Refract Surg 18:135–139

    PubMed  Google Scholar 

  98. Marchitti SA, Chen Y, Thompson DC, Vasiliou V (2011) Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens 37:206–213

    PubMed Central  PubMed  Google Scholar 

  99. Sies H, Stahl W, Sundquist AR (1992) Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann NY Acad Sci 669:7–20

    CAS  PubMed  Google Scholar 

  100. Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP (2005) Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280:33766–33774

    CAS  PubMed  Google Scholar 

  101. Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835

    CAS  PubMed  Google Scholar 

  102. Watson WH, Chen Y, Jones DP (2003) Redox state of glutathione and thioredoxin in differentiation and apoptosis. BioFactors 17:307–314

    CAS  PubMed  Google Scholar 

  103. Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V et al (2009) Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit. Free Radic Biol Med 47:410–418

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kannan R, Tang D, Mackic JB, Zlokovic BV, Fernandez-Checa JC (1993) A simple technique to determine glutathione (GSH) levels and synthesis in ocular tissues as GSH–bimane adduct: application to normal and galactosemic guinea-pigs. Exp Eye Res 56:45–50

    CAS  PubMed  Google Scholar 

  105. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37:1511–1526

    CAS  PubMed  Google Scholar 

  106. Riley MV (1984) A role for glutathione and glutathione reductase in control of cornal hydration. Exp Eye Res 39:751–758

    CAS  PubMed  Google Scholar 

  107. Serbecic N, Beutelspacher SC (2005) Anti-oxidative vitamins prevent lipidperoxidation and apoptosis in corneal endothelial cells. Cell Tissue Res 320:465–475

    CAS  PubMed  Google Scholar 

  108. Crouch R, Ling Z, Hayden BJ (1988) Corneal oxygen scavenging systems: lysis of corneal epithelial cells by superoxide anions. Basic Life Sci 49:1043–1046

    CAS  PubMed  Google Scholar 

  109. Behndig A, Svensson B, Marklund SL, Karlsson K (1998) Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci 39:471–475

    CAS  PubMed  Google Scholar 

  110. Choi SI, Kim TI, Kim KS, Kim BY, Ahn SY et al (2009) Decreased catalase expression and increased susceptibility to oxidative stress in primary cultured corneal fibroblasts from patients with granular corneal dystrophy type II. Am J Pathol 175:248–261

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YM et al (1991) Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem 266:24398–24403

    CAS  PubMed  Google Scholar 

  112. Strålin P, Marklund SL (1994) Effects of oxidative stress on expression of extracellular superoxide dismutase, CuZn-superoxide dismutase and Mn-superoxide dismutase in human dermal fibroblasts. Biochem J 298:347–352

    PubMed Central  PubMed  Google Scholar 

  113. Black AT, Gordon MK, Heck DE, Gallo MA, Laskin DL et al (2011) UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem Pharmacol 81:873–880

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Cejková J, Ardan T, Cejka C, Luyckx J (2011) Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol 249:1185–1194

    PubMed  Google Scholar 

  115. Atalla LR, Sevanian A, Rao NA (1988) Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res 7:1023–1027

    CAS  PubMed  Google Scholar 

  116. Lassen N, Black WJ, Estey T, Vasiliou V (2008) The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 19:100–112

    CAS  PubMed  Google Scholar 

  117. Cejková J, Vejrazka M, Pláteník J, Stípek S (2004) Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol 39:1537–1543

    PubMed  Google Scholar 

  118. Kivelä T, Uusitalo M (1998) Structure, development and function of cytoskeletal elements in non-neuronal cells of the human eye. Prog Retin Eye Res 17:385–428

    PubMed  Google Scholar 

  119. Roberts JE (2002) Screening for ocular phototoxicity. Int J Toxicol 21:491–500

    CAS  PubMed  Google Scholar 

  120. Liu Y, Simon JD (2003) Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res 16:606–618

    CAS  PubMed  Google Scholar 

  121. Kuchle M, Mardin CY, Nguyen NX, Wartus P, Naumann GO (1998) Quantification of aqueous melanin granules in primary pigment dispersion syndrome. Am J Ophthalmol 126:442–445

    Google Scholar 

  122. Buller C, Johnson DH, Tschumper RC (1990) Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci 31:2156–2163

    CAS  PubMed  Google Scholar 

  123. Cracknell KP, Grierson I, Hogg P, Majekodunmi AA, Watson P et al (2006) Melanin in the trabecular meshwork is associated with age, POAG but not Latanoprost treatment. A masked morphometric study. Exp Eye Res 82:986–993

    CAS  PubMed  Google Scholar 

  124. Christen R, Pache M, Teuchner B, Meyer P, Prünte C et al (2003) Iris transillumination defects in patients with primary open angle glaucoma. Eur J Ophthalmol 13:365–369

    CAS  PubMed  Google Scholar 

  125. Eagle RC (1994) Congenital, developmental and degenerative disorders of the iris and ciliary body. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology. Saunders, Philadelphia, pp 367–388

    Google Scholar 

  126. Bill A (1965) The aqueous drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Invest Ophthalmol 4:911–919

    CAS  PubMed  Google Scholar 

  127. Bill A, Hellsing K (1965) Production and drainage of aqueous humor in the cynomolgus monkey (Macaca irus). Invest Ophthalmol 4:920–926

    CAS  PubMed  Google Scholar 

  128. Bill A (1971) Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res 11:195–206

    CAS  PubMed  Google Scholar 

  129. Raviola G, Butler JM (1985) Asymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels. Invest Ophthalmol Vis Sci 26:597–608

    CAS  PubMed  Google Scholar 

  130. Bill A, MaepeaO (1999) Meccanismi e vie di drenaggio dell’umor acqueo. In: Albert DM, Jackobiec FA (eds) Principi e pratica di Oftalmologia, Verducci, Roma, pp 221–241

  131. Stamper R (1992) Aqueous humor: secretion and dynamics. In: Tasman W, Jaeger E (eds) Duane’s foundations of clinical ophthalmology, vol 2. Lippincott, Philadelphia, pp 1–30

    Google Scholar 

  132. Toris CB, Koepsell SA, Yablonski ME, Camras CB (2002) Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma 11:253–258

    PubMed  Google Scholar 

  133. Toris CB, Yablonski ME, Wang YL, Camras CB (1999) Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 127:407–412

    CAS  PubMed  Google Scholar 

  134. Gaasterland D, Kupfer C, Milton R, Ross K, McCain L et al (1978) Studies of aqueous humor dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res 26:651–656

    CAS  PubMed  Google Scholar 

  135. Brubaker RF, Nagataki S, Townsend DJ, Burns RR, Higgins RG et al (1981) The effect of age on aqueous humor formation in man. Ophthalmology 88:283–288

    CAS  PubMed  Google Scholar 

  136. Toris CB, Tafoya ME, Camras CB, Yablonski ME (1995) Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology 102:456–461

    CAS  PubMed  Google Scholar 

  137. Pavao AF, Lee DA, Ethier CR, Johnson M, Anderson PJ et al (1989) Two-dimensional gel electrophoresis of calf aqueous humor, serum and filter-bound proteins. Invest Ophthalmol Vis Sci 30:731–738

    CAS  PubMed  Google Scholar 

  138. Ringvold A, Anderssen E, Kjonniksen I (2000) Distribution of ascorbate in the anterior bovine eye. Invest Ophthalmol Vis Sci 41:20–23

    CAS  PubMed  Google Scholar 

  139. Tokuda K, Zorumski CF, Izumi Y (2007) Effects of ascorbic acid on UV light-mediated photoreceptor damage in isolated rat retina. Exp Eye Res 84:537–543

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Gerometta RM, Malgor LA, Vilalta E, Leiva J, Candia OA (2005) Cl- concentrations of bovine, porcine and ovine aqueous humor are higher than in plasma. Exp Eye Res 80:307–312

    CAS  PubMed  Google Scholar 

  141. Rose RC, Richer SP, Bode AM (1998) Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med 217:397–407

    CAS  PubMed  Google Scholar 

  142. Spector A, Garner WH (1981) Hydrogen peroxide and human cataract. Exp Eye Res 33:673–681

    CAS  PubMed  Google Scholar 

  143. Russell P, Johnson DH (1996) Enzymes protective of oxidative damage present in all decades of life in the trabecular meshwork, as detected bytwo-dimensional gel electrophoresis protein maps. J Glaucoma 5:317–324

    CAS  PubMed  Google Scholar 

  144. Giblin FJ, McCready JP, Kodama T, Reddy VN (1984) A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp Eye Res 38:87–93

    CAS  PubMed  Google Scholar 

  145. Vrabec F (1952) The anterior superficial endothelium of the human iris. Ophthalmologica 123:20–30

    CAS  PubMed  Google Scholar 

  146. Izzotti A, Saccà SC, Di Marco B, Penco S, Bassi AM (2008) Antioxidant activity of timolol on endothelial cells and its relevance for glaucoma course. Eye (Lond) 22:445–453

    CAS  Google Scholar 

  147. Gabelt BT, Kaufman PL (1989) Prostaglandin F2 alpha increases uveoscleral outflow in the cynomolgus monkey. Exp Eye Res 49:389–402

    CAS  PubMed  Google Scholar 

  148. Chen JZ, Kadlubar FF (2003) A new clue to glaucoma pathogenesis. Am J Med 114:697–698

    PubMed  Google Scholar 

  149. Polansky J, Alvarado J (1994) Cellular mechanisms influencing the aqueous humor outflow pathway. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology: basic science. Saunders, Philadelphia, pp 226–251

    Google Scholar 

  150. Tian B, Geiger B, Epstein DL, Kaufman PL (2000) Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci 41:619–623

    CAS  PubMed  Google Scholar 

  151. Vittal V, Rose A, Gregory KE, Kelley MJ, Acott TS (2005) Changes in gene expression by trabecular meshwork cells in response to mechanical stretching. Invest Ophthalmol Vis Sci 46:2857–2868

    PubMed  Google Scholar 

  152. Bachem MG, Wendelin D, Schneiderhan W, Haug C, Zorn U et al (1999) Depending on their concentration oxidized low density lipoproteins stimulate extracellular matrix synthesis or induce apoptosis in human coronary artery smooth muscle cells. Clin Chem Lab Med 37:319–326

    CAS  PubMed  Google Scholar 

  153. Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH et al (2006) TGF-b2 induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci 47:226–234

    PubMed  Google Scholar 

  154. Bradley JM, Vranka J, Colvis CM, Conger DM, Alexander JP et al (1998) Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci 39:2649–2658

    CAS  PubMed  Google Scholar 

  155. Tripathi RC, Li J, Chan WF, Tripathi BJ (1994) Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 59:723–727

    CAS  PubMed  Google Scholar 

  156. Wordinger RJ, Fleenor DL, Hellberg PE, Pang IH, Tovar TO et al (2007) Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. Invest Ophthalmol Vis Sci 48:1191–1200

    PubMed  Google Scholar 

  157. Wilbanks GA, Mammolenti M, Streilein JW (1992) Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID upon intraocular transforming growth factor-beta. Eur J Immunol 22:165–173

    CAS  PubMed  Google Scholar 

  158. Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF et al (2011) Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis 17:1745–1758

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Epstein DL, De Kater AW, Lou M, Patel J (1990) Influences of glutathione and sulfhydryl containing compounds on aqueous humor outflow function. Exp Eye Res 50:785–793

    CAS  PubMed  Google Scholar 

  160. Sawaguchi S, Yue BY, Chang IL, Wong F, Higginbotham EJ (1992) Ascorbic acid modulates collagen type I gene expression by cells from an eye tissue-trabecular meshwork. Cell Mol Biol 38:587–604

    CAS  PubMed  Google Scholar 

  161. Schachtschabel DO, Binninger E (1993) Stimulatory effects of ascorbic acid on hyaluronic acid synthesis of in vitro cultured normal and glaucomatous trabecular meshwork cells of the human eye. Gerontology 26:243–246

    CAS  Google Scholar 

  162. McCarty MF (1998) Primary open-angle glaucoma may be a hyaluronic acid deficiency disease: potential for glucosamine in prevention and therapy. Med Hypotheses 51:483–484

    CAS  PubMed  Google Scholar 

  163. Virno M, Bucci MG, Pecori-Giraldi J, Cantore G (1966) Intravenous glycerol-vitamin C (sodium salt) as osmotic agents to reduce intraocular pressure. Am J Ophthalmol 62:824–833

    CAS  PubMed  Google Scholar 

  164. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    CAS  PubMed  Google Scholar 

  165. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Overby DR, Stamer WD, Johnson M (2009) The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res 88:656–670

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Epstein DL, Rohen JW (1991) Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci 32:160–171

    CAS  PubMed  Google Scholar 

  168. Johnson M, Erickson K (2000) Aqueous humor and the dynamics of its flow. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology. Saunders, Philadelphia, pp 2577–2595

    Google Scholar 

  169. Sit AJ, Coloma FM, Ethier CR, Johnson M (1997) Factors affecting the pores of the inner wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci 38:1517–1525

    CAS  PubMed  Google Scholar 

  170. Johnson M, Chan D, Read AT, Christensen C, Sit A et al (2002) The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci 43:2950–2955

    PubMed  Google Scholar 

  171. Scott PA, Lu Z, Liu Y, Gong H (2009) Relationships between increased aqueous outflow facility during washout with the changes in hydrodynamic pattern and morphology in bovine aqueous outflow pathways. Exp Eye Res 89:942–949

    CAS  PubMed  Google Scholar 

  172. Alvarado JA, Betanzos A, Franse-Carman L, Chen J, González-Mariscal L (2004) Endothelia of Schlemm’s canal and trabecular meshwork: distinct molecular, functional, and anatomic features. Am J Physiol Cell Physiol 286:C621–C634

    CAS  PubMed  Google Scholar 

  173. Alvarado JA, Alvarado RG, Yeh RF, Franse-Carman L, Marcellino GR et al (2005) A new insight into the cellular regulation of aqueous outflow: how trabecular meshwork endothelial cells drive a mechanism that regulates the permeability of Schlemm’s canal endothelial cells. Br J Ophthalmol 89:1500–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Alvarado JA, Yeh RF, Franse-Carman L, Marcellino G, Brownstein MJ (2005) Interactions between endothelia of the trabecular meshwork and of Schlemm’s canal: a new insight into the regulation of aqueous outflow in the eye. Trans Am Ophthalmol Soc 103:148–162

    PubMed Central  PubMed  Google Scholar 

  175. Bradley JM, Anderssohn AM, Colvis CM, Parshley DE, Zhu XH et al (2000) Mediation of laser trabeculoplasty-induced matrix metalloproteinase expression by IL-1beta and TNFalpha. Invest Ophthalmol Vis Sci 41:422–430

    CAS  PubMed  Google Scholar 

  176. Kelley MJ, Rose AY, Song K, Chen Y, Bradley JM et al (2007) Synergism of TNF and IL-1 in the induction of matrix metalloproteinase-3 in trabecular meshwork. Invest Ophthalmol Vis Sci 48:2634–2643

    PubMed  Google Scholar 

  177. Stamer WD, Peppel K, O’Donnell ME, Roberts BC, Wu F et al (2001) Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest Ophthalmol Vis Sci 42:1803–1811

    CAS  PubMed  Google Scholar 

  178. Al-Aswad LA, Gong H, Lee D, O’Donnell ME, Brandt JD et al (1999) Effects of Na-K-2CI cotransport regulators on outflow facility in calf and human eyes in vitro. Invest Ophthalmol Vis Sci 40:1695–1701

    CAS  PubMed  Google Scholar 

  179. Gual A, Llobet A, Gilabert R, Borras M (1997) Effects of time of storage, albumin, and osmolality changes on outflow facility (C) of bovine anterior segment in vitro. Invest Ophthalmol Vis Sci 38:2165–2171

    CAS  PubMed  Google Scholar 

  180. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    CAS  PubMed  Google Scholar 

  181. Tradtrantip L, Tajima M, Li L, Verkman AS (2009) Aquaporin water channels in transepithelial fluid transport. J Med Invest 56:179–184

    PubMed Central  PubMed  Google Scholar 

  182. Naka M, Kanamori A, Negi A, Nakamura M (2010) Reduced expression of aquaporin-9 in rat optic nerve head and retina following elevated intraocular pressure. Invest Ophthalmol Vis Sci 51:4618–4626

    PubMed  Google Scholar 

  183. Flammer J, Haefliger IO, Orgul S, Resnick T (1999) Vascular deregulation: a principal risk factor for glaucomatous damage? J Glaucoma 8:212–219

    CAS  PubMed  Google Scholar 

  184. Dunn CJ (1995) Cytokines as mediators of chronic inflammatory disease. In: Kimball ES (ed) Cytokines and inflammation. CRC, London, pp 1–34

  185. Mercurio F, Manning AM (1999) NF-κB as a primary regulator of the stress response. Oncogene 18:6163–6171

    CAS  PubMed  Google Scholar 

  186. Itoh H, Nakao K (1999) Vascular stress response and endothelial vasoactive factors for vascular remodeling. Diabetes Res Clin Pract 45:83–88

    CAS  PubMed  Google Scholar 

  187. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    PubMed  Google Scholar 

  188. Chua J, Vania M, Cheung CM, Ang M, Chee SP et al (2012) Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol Vis 18:431–438

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Shifera AS, Trivedi S, Chau P, Bonnemaison LH, Iguchi R et al (2010) Constitutive secretion of chemokines by cultured human trabecular meshwork cells. Exp Eye Res 91:42–47

    CAS  PubMed  Google Scholar 

  190. Alvarado JA, Katz LJ, Trivedi S, Shifera AS (2010) Monocyte modulation of aqueous outflow and recruitment to the trabecular meshwork following selective laser trabeculoplasty. Arch Ophthalmol 128:731–737

    PubMed  Google Scholar 

  191. Yan DB, Trope GE, Ethier CR, Menon A, Wakeham A (1991) Effects of hydrogen peroxide-induced oxidative damage on outflow facility and washout in pig eyes. Invest Ophthal Vis Sci 32:2515–2520

    CAS  PubMed  Google Scholar 

  192. Padgaonkaret V, Giblin FJ, Leverenz V, Lin LR, Reddy VN (1994) Studies of H2O2-induced effects on cultured bovine trabecular meshwork cells. J Glaucoma 3:123–131

    Google Scholar 

  193. Wiederholt M, Thieme H, Stumpff F (2000) The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 19(271):295

    Google Scholar 

  194. Wiederholt M (2000) New aspects in acueous humor dynamics. In: Orgul S, Flammer J (eds) Pharmacotherapy in glaucoma. Hans Huber, Bern, pp 65–72

    Google Scholar 

  195. Hann CR, Fautsch MP (2009) Preferential fluid flow in the human trabecular meshwork near collector channels. Invest Ophthalmol Vis Sci 50:1692–1697

    PubMed Central  PubMed  Google Scholar 

  196. Zhou L, Fukuchi T, Kawa JE, Higginbotham EJ, Yue BY (1995) Loss of cell-matrix cohesiveness after phagocytosis by trabecular meshwork cells. Invest Ophthalmol Vis Sci 36:787–795

    CAS  PubMed  Google Scholar 

  197. Calthorpe CM, Grierson I (1990) Fibronectin induces migration of bovine trabecular meshwork cells in vitro. Exp Eye Res 51:39–48

    CAS  PubMed  Google Scholar 

  198. Stumpff F, Wiederholt M (2000) Regulation of trabecular meshwork contractility. Ophthalmologica 214:33–53

    CAS  PubMed  Google Scholar 

  199. Yue BY (1996) The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol 40:379–390

    CAS  PubMed  Google Scholar 

  200. Zhou L, Cheng EL, Rege P, Yue BY (2000) Signal transduction mediated by adhesion of human trabecular meshwork cells to extracellular matrix. Exp Eye Res 70:457–465

    CAS  PubMed  Google Scholar 

  201. Verma S, Buchanan MR, Anderson TJ (2003) Endothelial function testing as a biomarker of vascular disease. Circulation 108:2054–2059

    PubMed  Google Scholar 

  202. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  203. Drummond HA (2009) The (F)low down on the endothelial epithelial sodium channel: epithelial sodium channel as a brake on flow-mediated vasodilation. Hypertension 53:903–904

    CAS  PubMed  Google Scholar 

  204. Dyka FM, May CA, Enz R (2005) Subunits of the epithelial sodium channel family are differentially expressed in the retina of mice with ocular hypertension. J Neurochem 94:120–128

    CAS  PubMed  Google Scholar 

  205. Wang N, Chintala SK, Fini ME, Schuman JS (2001) Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med 7:304–309

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Saccà SC, Centofanti M, Izzotti A (2012) New proteins as vascular biomarkers in primary open angle glaucomatous aqueous humor. Invest Ophthalmol Vis Sci 53:4242–4253

    PubMed  Google Scholar 

  207. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    PubMed  Google Scholar 

  208. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108:2034–2040

    PubMed  Google Scholar 

  209. Minuz P, Fava C, Lechi A (2006) Lipid peroxidation, isoprostanes and vascular damage. Pharmacol Rep 58:57–68

    PubMed  Google Scholar 

  210. Napoli C, Ignarro LJ (2001) Nitric oxide and atherosclerosis. Nitric Oxide 5:88–97

    CAS  PubMed  Google Scholar 

  211. Daiber A, Oelze M, Wenzel P, Wickramanayake JM, Schuhmacher S et al (2009) Nitrate tolerance as a model of vascular dysfunction: roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress. Pharmacol Rep 61:33–48

    CAS  PubMed  Google Scholar 

  212. Ruschitzka F, Quaschning T, Noll G, deGottardi A, Rossier MF et al (2001) Endothelin 1 type a receptor antagonism prevents vascular dysfunction and hypertension induced by 11beta-hydroxysteroid dehydrogenase inhibition: role of nitric oxide. Circulation 103:3129–3135

    CAS  PubMed  Google Scholar 

  213. Rimbach G, Valacchi G, Canali R, Virgili F (2000) Macrophages stimulated with IFN-γ activate NF-κB and induce MCP-1 gene expression in primary human endothelial cells. Mol Cell Biol Res Commun 3:238–242

    CAS  PubMed  Google Scholar 

  214. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-κB: its role in health and disease. J Mol Med 82:434–448

    CAS  PubMed  Google Scholar 

  215. Dela Paz NG, Simeonidis S, Leo C, Rose DW, Collins T (2007) Regulation of NF-κB-dependent gene expression by the POU domain transcription factor. J Biol Chem 282:8424–8434

    CAS  PubMed  Google Scholar 

  216. Doganay S, Evereklioglu C, Turkoz Y, Er H (2002) Decreased nitric oxide production in primary open-angle glaucoma. Eur J Ophthalmol 12:44–48

    CAS  PubMed  Google Scholar 

  217. Dismuke WM, Mbadugha CC, Ellis DZ (2008) NO-induced regulation of human trabecular meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel. Am J Physiol Cell Physiol 294:C1378–C1386

    CAS  PubMed  Google Scholar 

  218. Dismuke WM, Ellis DZ (2009) Activation of the BKCa channel increases outflow facility and decreases trabecular meshwork cell. J Ocul Pharmacol Ther 25:309–314

    CAS  PubMed  Google Scholar 

  219. Ellis DZ, Nathanson JA, Rabe J, Sweadner KJ (2001) Carbachol and nitric oxide inhibition of Na, K-ATPase activity in bovine ciliary processes. Invest Ophthalmol Vis Sci 42:2625–2631

    CAS  PubMed  Google Scholar 

  220. Shahidullah M, Delamere NA (2006) NO donors inhibit Na, K-ATPase activity by a protein kinase G-dependent mechanism in the nonpigmented ciliary epithelium of the porcine eye. Br J Pharmacol 148:871–880

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Kotikoski H, Alajuuma P, Moilanen E, Salmenperä P et al (2002) Comparison of nitric oxide donors in lowering intraocular pressure in rabbits: role of cyclic GMP. J Ocul Pharmacol Ther 18:11–23

    CAS  PubMed  Google Scholar 

  222. Haynes WG, Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16:1081–1098

    CAS  PubMed  Google Scholar 

  223. Rosenthal R, Fromm M (2011) Endothelin antagonism as an active principle for glaucoma therapy. Br J Pharmacol 162:806–816

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Noske W, Hensen J, Wiederholt M (1997) Endothelin-like immunoreactivity in aqueous humor of patients with primary open angle glaucoma and cataract. Graefes Arch Clin Exp Ophthalmol 235:551–552

    CAS  PubMed  Google Scholar 

  225. Tezel G, Kass MA, Kolker AE, Becker B, Wax MB (1997) Plasma and aqueous humor endothelin levels in primary open angle glaucoma. J Glaucoma 6:83–89

    CAS  PubMed  Google Scholar 

  226. Buckley C, Hadoke PW, Henry E, O’Brien C (2002) Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol 86:227–232

    PubMed Central  PubMed  Google Scholar 

  227. Henry E, Newby DE, Webb DJ, O’Brien C (1999) Peripheral endothelial dysfunction in normal pressure glaucoma. Invest Ophthalmol Vis Sci 40:1710–1714

    CAS  PubMed  Google Scholar 

  228. Henry E, Newby DE, Webb DJ, Hadoke PW, O’Brien CJ (2006) Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci 47:2528–2532

    PubMed  Google Scholar 

  229. Yorio T, Krishnamoorthy R, Prasanna G (2002) Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma 11:259–270

    PubMed  Google Scholar 

  230. Redmond EM, Cahill PA, Hodges R, Zhang S, Sitzmann JV (1996) Regulation of endothelin receptors by nitric oxide in cultured rat vascular smooth muscle cells. J Cell Physiol 166:469–479

    CAS  PubMed  Google Scholar 

  231. Su WW, Cheng ST, Ho WJ, Tsay PK, Wu SC, Chang SH (2008) Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology 115:1173–1178

    PubMed  Google Scholar 

  232. Siasos G, Tousoulis D, Siasou G, Moschos MM, Oikonomou E et al (2011) The association between glaucoma, vascular function and inflammatory process. Int J Cardiol 146:113–115

    PubMed  Google Scholar 

  233. Good TJ, Kahook MY (2010) The role of endothelin in the pathophysiology of glaucoma. Expert Opin Ther Targets 14:647–654

    CAS  PubMed  Google Scholar 

  234. Luna C, Li G, Liton PB, Qiu J, Epstein DL et al (2009) Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem Toxicol 47:198–204

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Tamm ER (2008) Molecular approaches to glaucoma: intriguing clues for pathology. In: Mortimer C (ed) Current topics in membranes. Elsevier, Amsterdam, pp 379–425

  236. Izzotti A, Centofanti M, Saccà SC (2012) Molecular diagnostic of ocular diseases: the application of antibody microarray. Exp Rev Mol Diagn 12:629–643

    CAS  Google Scholar 

  237. He Y, Leung KW, Zhuo Y-H, Ge J (2009) Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol Vis 15:815–825

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Shen X, Koga T, Park BC, SundarRaj N, Yue BY (2008) Rho GTPase and cAMP/protein kinase A signaling mediates myocilin-induced alterations in cultured human trabecular meshworkcells. J Biol Chem 283:603–612

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Joe MK, Tomarev SI (2010) Expression of myocilin mutants sensitizes cells to oxidative stress-induced apoptosis: implication for glaucoma pathogenesis. Am J Pathol 176:2880–2890

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R, Yue BY (2010) Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. Am J Pathol 176:343–352

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Kroeber M, Ohlmann A, Russell P, Tamm ER (2006) Transgenic studies on the role of optineurin in the mouse eye. Exp Eye Res 82:1075–1085

    CAS  PubMed  Google Scholar 

  242. Vittow J, Borras T (2002) Expression of optineurin, a glaucoma-linked gene, is influenced by elevated intraocular pressure. Biochem Biophys Res Commun 298:67–74

    Google Scholar 

  243. Sudhakar C, Nagabhushana A, Jain N, Swarup G (2009) NF-kappaB mediates tumor necrosis factor alpha-induced expression of optineurin, a negative regulator of NF-kappaB. PLoS ONE 4:e5114

    PubMed Central  PubMed  Google Scholar 

  244. Park BC, Tibudan M, Samaraweera M, Shen X, Yue BY (2007) Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells 12:969–979

    CAS  PubMed  Google Scholar 

  245. Fernández-Durango R, Fernández-Martínez A, García-Feijoo J, Castillo A, de la Casa JM et al (2008) Expression of nitrotyrosine and oxidative consequences in the trabecular meshwork of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 49:2506–2511

    PubMed  Google Scholar 

  246. Johnson DH, Richardson TM, Epstein DL (1989) Trabecular meshwork recovery after phagocytic challenge. Curr Eye Res 8:1121–1130

    CAS  PubMed  Google Scholar 

  247. Grierson I (1987) What is open angle glaucoma? Eye 1:15–28

    PubMed  Google Scholar 

  248. Ju WK, Kim KY, Lindsey JD, Angert M, Patel A et al (2009) Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC-5 cells. Mol Vis 15:120–134

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Johnson M, Gong H, Freddo TF, Ritter N, Kamm R (1993) Serum proteins and aqueous outflow resistance in bovine eyes. Invest Ophthalmol Vis Sci 34:3549–3557

    CAS  PubMed  Google Scholar 

  250. Smith PJ, Samuelson DA, Brooks DE, Whitley RD (1986) Unconventional aqueous humor outflow of microspheres perfused into the equine eye. Am J Vet Res 47:2445–2453

    CAS  PubMed  Google Scholar 

  251. Cvekl A, Tamm ER (2004) Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioassays 26:374–386

    CAS  Google Scholar 

  252. Steely HT Jr, English-Wright SL, Clark AF (2000) The similarity of protein expression in trabecular meshwork and lamina cribrosa: implications for glaucoma. Exp Eye Res 70:17–30

    CAS  PubMed  Google Scholar 

  253. Chowdhury U, Madden BJ, Charlesworth MC, Fautsch MP (2010) Proteome analysis of aqueous humor. Invest Ophthamol Vis Sci 51:4921–4931

    Google Scholar 

  254. Yu J, Liu F, Cui SJ, Liu Y, Song ZY et al (2008) Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics 8:3667–3678

    CAS  PubMed  Google Scholar 

  255. Wang WH, McNatt LG, Pang IH, Millar JC, Hellberg PE et al (2008) Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest 118:1056–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Lin HJ, Tsai FJ, Hung P, Chen WC, Chen HY et al (2006) Association of E-cadherin gene 3′-UTR C/T polymorphism with primary open angle glaucoma. Ophthalmic Res 38:44–48

    CAS  PubMed  Google Scholar 

  257. Lee HS, Tomarev SI (2007) Optimedin induces expression of N-cadherin and stimulates aggregation of NGF-stimulated PC12 cells. Exp Cell Res 13:98–108

    Google Scholar 

  258. Surgucheva I, Surguchov A (2011) Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma. Mol Vis 17:2878–2888

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Khurana RN, Deng PF, Epstein DL, Vasantha Rao P (2003) The role of protein kinase C in modulation of aqueous humor outflow facility. Exp Eye Res 76:39–47

    CAS  PubMed  Google Scholar 

  260. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:S227–S232

    CAS  PubMed  Google Scholar 

  261. Lin D, Takemoto DJ (2005) Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J Biol Chem 280:13682–13693

    CAS  PubMed  Google Scholar 

  262. Liu JP, Schlosser R, Ma WY, Dong Z, Feng H et al (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKC alpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 79:393–403

    CAS  Google Scholar 

  263. Kim YH, Kim YS, Park CH, Chung IY, Yoo JM et al (2008) Protein kinase C-delta mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes 57:2181–2190

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Bagnis A, Izzotti A, Centofanti M, Saccà SC (2012) Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp Eye Res 103:55–62

    CAS  PubMed  Google Scholar 

  265. Sit AJ, Gong H, Ritter N, Freddo TF, Kamm R et al (1997) The role of soluble proteins in generating aqueous outflow resistance in the bovine and human eye. Exp Eye Res 64:813–821

    CAS  PubMed  Google Scholar 

  266. Hu DN, Ritch R, Liebmann J, Liu Y, Cheng B et al (2002) Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes. J Glaucoma 11:406–410

    PubMed  Google Scholar 

  267. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  268. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  269. Resch H, Garhofer G, Fuchsjäger-Mayrl G, Hommer A, Schmetterer L (2009) Endothelial dysfunction in glaucoma. Acta Ophthalmol 87:4–12

    PubMed  Google Scholar 

  270. Lo WR, Rowlette LL, Caballero M, Yang P, Hernandez MR et al (2003) Tissue differential microarray analysis of dexamethasone induction reveals potential mechanisms of steroid glaucoma. Invest Ophthalmol Vis Sci 44:473–485

    PubMed  Google Scholar 

  271. Esson DW, Popp MP, Liu L, Schultz GS, Sherwood MB (2004) Microarray analysis of the failure of filtering blebs in a rat model of glaucoma filtering surgery. Invest Ophthalmol Vis Sci 45:4450–4462

    PubMed  Google Scholar 

  272. Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47:977–985

    PubMed  Google Scholar 

  273. Colak D, Morales J, Bosley TM, Al-Bakheet A, Alyounes B et al (2012) Genome-wide expression profiling of patients with primary open angle glaucoma. Invest Ophthalmol Vis Sci 18:431–438

    Google Scholar 

  274. Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2009) Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 15:2488–2497

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2011) MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226:1407–1414

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the US Glaucoma Research Foundation (TGF) (New York, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Claudio Saccà.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Supplementary material 2 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccà, S.C., Izzotti, A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell. Mol. Life Sci. 71, 2197–2218 (2014). https://doi.org/10.1007/s00018-013-1493-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1493-z

Keywords

Navigation