Skip to main content

Advertisement

Log in

Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gold nanoparticles have emerged as promising tools for cancer research and therapy, where they can promote thermal killing. The molecular mechanisms underlying these events are not fully understood. The geometry and size of gold nanoparticles can determine the severity of cellular damage. Therefore, small and big gold nanospheres as well as gold nanoflowers were evaluated side-by-side. To obtain quantitative data at the subcellular and molecular level, we assessed how gold nanoparticles, either alone or in combination with mild hyperthermia, altered the physiology of cultured human breast cancer cells. Our analyses focused on the nucleus, because this organelle is essential for cell survival. We showed that all the examined gold nanoparticles associated with nuclei. However, their biological effects were quantitatively different. Thus, depending on the shape and size, gold nanoparticles changed multiple nuclear parameters. They redistributed stress-sensitive regulators of nuclear biology, altered the nuclear morphology, reorganized nuclear laminae and envelopes, and inhibited nucleolar functions. In particular, gold nanoparticles reduced the de novo biosynthesis of RNA in nucleoli, the subnuclear compartments that produce ribosomes. While small gold nanospheres and nanoflowers, but not big gold nanospheres, damaged the nucleus at normal growth temperature, several of these defects were further exacerbated by mild hyperthermia. Taken together, the toxicity of gold nanoparticles correlated with changes in nuclear organization and function. These results emphasize that the cell nucleus is a prominent target for gold nanoparticles of different morphologies. Moreover, we demonstrated that RNA synthesis in nucleoli provides quantitative information on nuclear damage and cancer cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CAS:

Cellular apoptosis susceptibility protein

DAPI:

4′,6-Diamidino-2-phenylindole

GNP:

Gold nanoparticle

H3:

Histone H3

ICP-MS:

Inductively coupled plasma mass spectroscopy

LSP:

Localized surface plasmon resonance

MTT:

3-(4,5-dimethythiazol-2-yl)-2,5-Diphenyl tetrazolium bromide

NIR:

Near-infrared

NPC:

Nuclear pore complex

STDEV:

Standard deviation

References

  1. Au L, Chen J, Wang LV, Xia Y (2010) Gold nanocages for cancer imaging and therapy. Methods Mol Biol 624:83–99

    Article  PubMed  CAS  Google Scholar 

  2. Bickford L, Sun J, Fu K, Lewinski N, Nammalvar V, Chang J, Drezek R (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 19:315102

    Article  PubMed  Google Scholar 

  3. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, Kulkarni RR, Kan P, Fent GM, Casteel SW, Smith CJ, Boote E, Robertson JD, Cutler C, Lever JR, Katti KV, Kannan R (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci 107:8760–8765. doi:10.1073/pnas.1002143107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Choi J, Yang J, Park J, Kim E, Suh J-S, Huh Y-M, Haam S (2011) Specific near-IR absorption imaging of glioblastomas using integrin-targeting gold nanorods. Adv Funct Mater 21(6):1082–1088. doi:10.1002/adfm.201002253

    Article  CAS  Google Scholar 

  5. Maltez-da Costa M, de la Escosura-Muniz A, Nogues C, Barrios L, Ibabanez E, Merkoci A (2012) Simple monitoring of cancer cells using nanoparticles. Nano Lett 12(8):4164–4171. doi:10.1021/nl301726g

    Article  PubMed  CAS  Google Scholar 

  6. Cheng Y, Samia CA, Meyers JD, Panagopoulos I, Fei B, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130(32):10643–10647. doi:10.1021/ja801631c

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang T, Zhang X, Pan Y, Miao X, Su Z, Wang C, Li X (2011) Fabrication of doxorubicin functionalized gold nanorod probes for combined cancer imaging and drug delivery. Dalton Trans 40(38):9789–9794

    Article  PubMed  CAS  Google Scholar 

  8. Jung Y, Reif R, Zeng Y, Wang RK (2011) Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett 11(7):2938–2943. doi:10.1021/nl2014394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Huang Y-F, Sefah K, Bamrungsap S, Chang H-T, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24(20):11860–11865. doi:10.1021/la801969c

    Article  PubMed  CAS  Google Scholar 

  10. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. doi:10.1021/ar7002804

    Article  PubMed  CAS  Google Scholar 

  11. Zhang JZ (2010) Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J Phys Chem Lett 1(4):686–695. doi:10.1021/jz900366c

    Article  CAS  Google Scholar 

  12. von Maltzahn G, Park J-H, Lin KY, Singh N, Schwoppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10(7):545–552

    Article  Google Scholar 

  13. Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6(6):745–752. doi:10.1002/smll.200901557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. doi:10.1002/smll.201000134

    Article  PubMed  CAS  Google Scholar 

  15. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74(7):592–604. doi:10.1002/jemt.20928

    Article  PubMed  CAS  Google Scholar 

  16. Salminen A, Kaarniranta K, Salminen A, Kaarniranta K (2009) SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 378(1):6–9

    Article  PubMed  CAS  Google Scholar 

  17. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550. doi:10.1021/nl070363y

    Article  PubMed  CAS  Google Scholar 

  18. Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4(5):2595–2606. doi:10.1021/nn901869f

    Article  PubMed  CAS  Google Scholar 

  19. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31(30):7606–7619

    Article  PubMed  CAS  Google Scholar 

  20. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng 14:1–16. doi:10.1146/annurev-bioeng-071811-150124

    Article  CAS  Google Scholar 

  21. Boisvert F-M, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  PubMed  CAS  Google Scholar 

  22. Boulon S, Westman BJ, Hutten S, Boisvert F-M, Lamond AI (2010) The nucleolus under stress. Mol Cell 40(2):216–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J, Prats AC, Mertani HC, Dumontet C, Diaz JJ (2009) Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 4(9):e7147

    Article  PubMed  PubMed Central  Google Scholar 

  24. Derenzini M, Ceccarelli C, Santini D, Taffurelli M, Trere D (2004) The prognostic value of the AgNOR parameter in human breast cancer depends on the pRb and p53 status. J Clin Pathol 57(7):755–761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Derenzini M, Montanaro L, Trere D (2009) What the nucleolus says to a tumour pathologist. Histopathology 54(6):753–762

    Article  PubMed  Google Scholar 

  26. Maggi LB Jr, Weber JD (2005) Nucleolar adaptation in human cancer. Cancer Invest 23(7):599–608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Mello ML, Vidal BC, Russo J, Planding W, Schenck U (2008) Image analysis of the AgNOR response in ras-transformed human breast epithelial cells. Acta Histochem 110(3):210–216

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cann DL, Dellaire G (2010) Nucleolus as a biomarker in cancer: past and future. Can J Pathol 21(1):30–34

    Google Scholar 

  29. Jamison JM, Gilloteaux J, Perlaky L, Thiry M, Smetana K, Neal D, McGuire K, Summers JL (2010) Nucleolar changes and fibrillarin redistribution following apatone treatment of human bladder carcinoma cells. J Histochem Cytochem 58(7):635–651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Jiang MC, Luo SF, Li LT, Lin CC, Du SY, Lin CY, Hsu YW, Liao CF (2007) Synergic CSE1L/CAS, TNFR-1, and p53 apoptotic pathways in combined interferon-gamma/adriamycin-induced apoptosis of Hep G2 hepatoma cells. J Exp Clin Cancer Res 26(1):91–99

    PubMed  CAS  Google Scholar 

  31. Kettern N, Dreiseidler M, Tawo R, Hohfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391(5):481–489

    Article  PubMed  CAS  Google Scholar 

  32. Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, Macias AT, Daniels Z, Geoffroy S, Dopson M, Lavan P, Matassova N, Francis GL, Graham CJ, Parsons R, Wang Y, Padfield A, Comer M, Drysdale MJ, Wood M (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66(3):535–545

    Article  PubMed  CAS  Google Scholar 

  33. Behrens P, Brinkmann U, Wellmann A (2003) CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis 8(1):39–44

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka T, Ohkubo S, Tatsuno I, Prives C, Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007) HCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130(4):638–650

    Article  PubMed  CAS  Google Scholar 

  35. Sharp A, Cutress RI, Johnson PW, Packham G, Townsend PA, Sharp A, Cutress RI, Johnson PWM, Packham G, Townsend PA (2009) Short peptides derived from the BAG-1 C-terminus inhibit the interaction between BAG-1 and HSC70 and decrease breast cancer cell growth. FEBS Lett 583(21):3405–3411

    Article  PubMed  CAS  Google Scholar 

  36. Tai C-J, Shen S-C, Lee W-R, Liao C-F, Deng W-P, Chiou H-Y, Hsieh C-I, Tung J-N, Chen C-S, Chiou J-F, Li L-T, Lin C-Y, Hsu C-H, Jiang M-C (2010) Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 316(17):2969–2981

    Article  PubMed  CAS  Google Scholar 

  37. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24

    Article  PubMed  CAS  Google Scholar 

  38. Strasser C, Grote P, Schauble K, Ganz M, Ferrando-May E (2012) Regulation of nuclear envelope permeability in cell death and survival. Nucleus 3(6):540–551

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Li YF, Huang CZ, Wu T (2008) Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal Chim Acta 626(1):37–43

    Article  PubMed  CAS  Google Scholar 

  40. Yuanyuan J, Xue-Jun W, Qi L, Jingjian L, Dongsheng X (2011) Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity. Nanotechnology 22(38):385601

    Article  Google Scholar 

  41. UTHSCSA (2012) UTHSCSA Image Tool version 3.0. vol 2012. http://compdent.uthscsa.edu/dig/download.html

  42. Banski P, Mahboubi H, Kodiha M, Shrivastava S, Kanagaratham C, Stochaj U (2010) Nucleolar targeting of the chaperone hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. J Biol Chem 285(28):21858–21867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz H-R, Cordes VC, Ferrando-May E (2005) Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 281:1296–1304. doi:10.1074/jbc.M511717200

    Article  PubMed  Google Scholar 

  44. Kodiha M, Ho-Wo-Cheong D, Stochaj U (2011) Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology. Am J Physiol Cell Physiol 301(6):C1307–C1315. doi:10.1152/ajpcell.00309.2011

    Article  PubMed  CAS  Google Scholar 

  45. Kodiha M, Banski P, Stochaj U (2011) Computer-based fluorescence quantification: a novel approach to study nucleolar biology. BMC Cell Biol 12(1):25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Kodiha M, Brown CM, Stochaj U (2008) Analysis of signaling events by combining high-throughput screening technology with computer-based image analysis. Sci Signal 1(37):pl2

    Article  PubMed  Google Scholar 

  47. Su H, Kodiha M, Lee S, Stochaj U (2013) Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment. PLoS One 8(11):e80237. doi:10.1371/journal.pone.0080237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Koch CB, Larsen EH (2011) Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem 83(7):2461–2468

    Article  PubMed  CAS  Google Scholar 

  49. Calzolai L, Gilliland D, Garcia CP, Rossi F (2011) Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. J Chromatogr A 1218(27):4234–4239

    Article  PubMed  CAS  Google Scholar 

  50. Wojciechowski J, Horky M, Gueorguieva M, Wesierska-Gadek J (2003) Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int J Cancer 106(4):486–495

    Article  PubMed  CAS  Google Scholar 

  51. Dickson KK, Diego AR, Carl AB (2010) Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21(10):105105

    Article  Google Scholar 

  52. Kodiha M, Banski P, Ho-Wo-Cheong D, Stochaj U (2008) Dissection of the molecular mechanisms that control the nuclear accumulation of transport factors importin-alpha and CAS in stressed cells. Cell Mol Life Sci 65(11):1756–1767

    Article  PubMed  CAS  Google Scholar 

  53. Kodiha M, Chu A, Lazrak O, Stochaj U (2005) Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70. Am J Physiol Cell Physiol 289(4):C1034–C1041

    Article  PubMed  CAS  Google Scholar 

  54. Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3(13):3095–3100

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (Hsp70) as an emerging drug target. J Med Chem 53(12):4585–4602. doi:10.1021/jm100054f

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Van de Broek B, Devoogdt N, D’Hollander A, Gijs H-L, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6):4319–4328. doi:10.1021/nn1023363

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from CIHR (Canadian Institutes of Health Research), NSERC (Natural Sciences and Engineering Council of Canada) and FQRNT (Fonds de Recherche du Québec–Nature et Technologies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Stochaj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2014_1622_MOESM1_ESM.tif

Suppl. Figure 1 Effect of gold nanospheres and nanoflowers on mitochondrial metabolic activity and proliferation. Dose–response curves are shown for MCF7 cells incubated with small (•) or big (●) gold nanospheres or gold nanoflowers (♦). MTT assays were carried out after 24-h incubation with GNPs; all results were normalized to untreated control cells. Each data point represents averages of at least three independent experiments performed in triplicates. Error bars indicate SEM. (B) Phosphorylation of histone H3. After overnight incubation with GNPs, MCF7 cells were further incubated for 3 h at 37 °C (No stress) or heat-shocked for 1 h at 43 °C and allowed to recover for 2 h or 24 h at 37 °C. Attached and floating cells were harvested and analyzed by quantitative Western blotting with antibodies against phospho(Ser10)-H3 and actin. For each data set, controls were incubated with vehicle. Results were normalized to controls, and changes in the ratio phospho-H3/actin are shown for two independent experiments. DNA synthesis was measured in controls or GNP-treated cells. EdU-positive cells were identified by quantitative image analysis. A minimum of 156 cells per data point was scored in each of two independent experiments. Results were normalized to vehicle-treated cells for each time point. V vehicle; S small gold nanospheres; F gold nanoflowers; B big gold nanospheres (TIFF 895 kb)

18_2014_1622_MOESM2_ESM.tif

Suppl. Figure 2 Detection of gold nanospheres in cytoplasmic and nuclear fractions. MCF7 cells were incubated overnight in the absence (V vehicle) or presence of small gold nanospheres (S). Cytoplasmic and nuclear fractions were prepared and GNPs detected by transmission electron microscopy (EM). The corresponding inductively coupled plasma mass spectroscopy (ICP-MS) values for cytoplasmic and nuclear fractions are also shown. Note that small gold nanospheres were present in both fractions (TIFF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodiha, M., Hutter, E., Boridy, S. et al. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell. Mol. Life Sci. 71, 4259–4273 (2014). https://doi.org/10.1007/s00018-014-1622-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1622-3

Keywords

Navigation