Skip to main content
Log in

Essential Normality of Homogeneous Submodules

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({M \subset H(\mathbb{B})}\) be a homogeneous submodule of the n-shift Hilbert module on the unit ball in \({\mathbb{C}^{n}}\). We show that a modification of an operator inequality used by Guo and Wang in the case of principal submodules is equivalent to the existence of factorizations of the form \({[M_{z_j}^*,P_M] = (N+1)^{-1}A_j}\), where N is the number operator on \({H(\mathbb{B})}\). Thus a proof of the inequality would yield positive answers to conjectures of Arveson and Douglas concerning the essential normality of homogeneous submodules of \({H(\mathbb{B})}\). We show that in all cases in which the conjectures have been established the inequality holds and leads to a unified proof of stronger results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arveson W.: Subalgebras of C*-algebras. III. Multivariable operator theory. Acta Math. 181, 159–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arveson W.: The curvature invariant of a Hilbert module over \({\mathbb{C}[z_1, \ldots, z_n]}\). J. Reine Angew. Math. 522, 173–236 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Arveson W.: The Dirac operator of a commuting tuple. J. Funct. Anal. 189, 53–79 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arveson, W.: Several problems in operator theory (2003). http://www.math.berkely.edu/arveson

  5. Arveson W.: p-summable commutators in dimension d. J. Oper. Theory 54, 101–117 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Arveson W.: Quotients of standard Hilbert modules. Trans. Am. Math. Soc. 359, 6027–6055 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Douglas, R.G.: A new kind of index theorem. In: Analysis, Geometry and Topology of Elliptic Operators (Roskilde, Denmark, 2005). World Scientific Publishing, Singapore (2006)

  8. Douglas R.G.: Essentially reductive Hilbert modules. J. Oper. Theory 55, 117–133 (2006)

    MATH  Google Scholar 

  9. Douglas, R.G., Paulsen, V.: Hilbert modules over function algebras. In: Pitman Research Notes in Mathematics, vol. 217 (1989)

  10. Douglas, R.G., Sarkar, J.: Essentially reductive weighted shift Hilbert modules. J. Oper. Theory (2010) (to appear)

  11. Eschmeier J.: Grothendieck’s comparison theorem and multivariable Fredholm theory. Arch. Math. 92, 461–475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eschmeier, J., Putinar, M.: Spectral decompositions and analytic sheaves. London Mathematical Society, New Series, vol. 10. Clarendon Press, Oxford (1996)

  13. Guo K., Wang K.: Essentially normal Hilbert modules and K-homology. Math. Ann. 340, 907–934 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shalit, O.: Stable polynomial division and essential normality of graded Hilbert modules, Preprint, U. Waterloo (2009)

  15. Yang R.W.: The Berger–Shaw theorem in the Hardy module over the bidisc. J. Oper. Theory 42, 379–404 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Eschmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschmeier, J. Essential Normality of Homogeneous Submodules. Integr. Equ. Oper. Theory 69, 171–182 (2011). https://doi.org/10.1007/s00020-010-1809-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1809-4

Mathematics Subject Classification (2010)

Keywords

Navigation