Skip to main content
Log in

Multipliers for p-Bessel Sequences in Banach Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Multipliers have been recently introduced as operators for Bessel sequences and frames in Hilbert spaces. These operators are defined by a fixed multiplication pattern (the symbol) which is inserted between the analysis and synthesis operators. In this paper, we will generalize the concept of Bessel multipliers for p-Bessel and p-Riesz sequences in Banach spaces. It will be shown that bounded symbols lead to bounded operators. Symbols converging to zero induce compact operators. Furthermore, we will give sufficient conditions for multipliers to be nuclear operators. Finally, we will show the continuous dependency of the multipliers on their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abodllahpour M.R., Faroughi M.H., Rahimi A.: pg-Frames in Banach spaces. Methods Funct. Anal. Toplol. 13(3), 201–210 (2007)

    Google Scholar 

  2. Aldroubi A., Gröchenig K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi A., Sun Q., Tang W.-S.: p-Frames and shift invariant subspaces of L p. J. Fourier Anal. Appl. 7(1), 1–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balazs P.: Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl. 325(1), 571–585 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balazs P.: Hilbert–Schmidt operators and frames—classification, best approximation by multipliers and algorithms. Int. J. Wavelets Multiresolut. Inf. Processing 6(2), 315–330 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balazs P.: Matrix-representation of operators using frames. Sampling Theory Signal Image Processing (STSIP) 7(1), 39–54 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Balazs P., Antoine J.-P., Grybos A.: Weighted and controlled frames: mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Processing 8(1), 109–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balazs, P., Deutsch, W.A., Noll, A., Rennison, J., White, J.: STx Programmer Guide, Version: 3.6.2. Acoustics Research Institute, Austrian Academy of Sciences (2005)

  9. Balazs P., Laback B., Eckel G., Deutsch W.A.: Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Trans. Audio Speech Lang. Processing 18(1), 34–49 (2010)

    Article  Google Scholar 

  10. Casazza P.G., Christensen O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Christensen O., Stoeva D.: p-Frames in separable Banach spaces. Adv. Comput. Math. 18(2-4), 117–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Depalle, Ph., Kronland-Martinet, R., Torrésani, B.: Time-frequency multipliers for sound synthesis. In: Proceedings of the Wavelet XII conference, SPIE annual Symposium, San Diego, August 2007

  13. Dörfler M., Torrésani B.: Representation of operators in the time-frequency domain and generalized gabor multipliers. J. Fourier Anal. Appl. 16(2), 261–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feichtinger, H.G., Nowak, K.: A First Survey of Gabor Multipliers, chap. 5, pp. 99–128. Birkhäuser Boston (2003)

  15. Fornasier M., Gröchenig K.: Intrinsic localization of frames. Constr. Approx. 22, 395–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gröchenig K., Heil C.: Modulation spaces and pseudodifferential operators. Integral Equ. Oper. Theory 34(4), 439–457 (1999)

    Article  Google Scholar 

  17. Gröchenig, K., Rzeszotnik, Z.: Banach algebras of pseudodifferential operators and their almost diagonalization. Ann. Inst. Fourier (Grenoble), pp. 2279–2314 (2008)

  18. Grothendieck, A.: Produits tensoriels topologiques et espace nucléaires. Mem. Am. Math. Soc. 16 (1955)

  19. Kowalski M., Torrésani B.: Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients. Signal Image Video Processing 3(3), 251–264 (2009). doi:10.1007/s11760-008-0076-1

    Article  MATH  Google Scholar 

  20. Matz G., Hlawatsch F.: Linear time-frequency filters: On-line Algorithms and applications. In: Papandreou-Suppappola, A. (eds) Application in Time-Frequency Signal Processing, chap. 6, pp. 205–271. CRC Press, Boca Raton (2002)

    Google Scholar 

  21. Matz G., Schafhuber D., Gröchenig K., Hartmann M., Hlawatsch F.: Analysis, optimization, and implementation of low-interference wireless multicarrier systems. IEEE Trans. Wireless Commun. 6(4), 1–11 (2007)

    Article  Google Scholar 

  22. Palmer, T.: Banach Algebras and the General Theory of *-Algebras. Algebras and Banach Algebras (Encyclopedia of Mathematics and its Applications), vol. 1 (1995)

  23. Pietsch A.: Operator Ideals. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  24. Rahimi, A.: Multipliers of generalized frames. Bull. Iranian Math. Soc. (2010, in press)

  25. Rauhut H., Schnass K., Vandergheynst P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inform. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  Google Scholar 

  26. Ruston A.F.: Direct products of banach spaces and linear functional equations. Proc. Lond. Math. Soc. (3) 1, 327–348 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruston, A.F.: On the fredholm theory of integral equations for operators belonging to the trace class of general banach spaces. Proc. Lond. Math. Soc, (2), pp. 109–124 (1951)

  28. Schatten R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1960)

    MATH  Google Scholar 

  29. Stoeva, D.: Perturbation of Frames in Banach spaces (submitted)

  30. Stoeva, D., Balazs, P.: Unconditional Convergence and Invertibility of Multipliers (2010, submitted)

  31. Wang D., Brown G.: Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Wiley-IEEE Press, New York (2006)

    Google Scholar 

  32. Young R.M.: An Introduction to Nonharmonic Fourier Series. Acedmic Press, London (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Rahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, A., Balazs, P. Multipliers for p-Bessel Sequences in Banach Spaces. Integr. Equ. Oper. Theory 68, 193–205 (2010). https://doi.org/10.1007/s00020-010-1814-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1814-7

Mathematics Subject Classification (2010)

Keywords

Navigation