Skip to main content
Log in

Low Mach Number Limits of Compressible Rotating Fluids

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the low Mach number limit for a compressible fluid rotating with a constant angular velocity in an exterior domain. The effect of Coriolis and centrifugal forces are taken into account, along with strong stratification due to the effect of gravitation. The anelastic approximation is identified as the limit problem. The main issue addressed in the paper is the interaction of the centrifugal force with acoustic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators: with applications to quantum mechanics and global geometry. In: Texts and Monographs in Physics. Springer-Verlag, Berlin (1987)

  2. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Donatelli D., Feireisl E., Novotný A.: On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discr. Contin. Dyn. Syst. Ser. B 12, 783–798 (2010)

    Article  Google Scholar 

  4. Eidus D.M.: Limiting amplitude principle (in Russian). Usp. Mat. Nauk. 24(3), 91–156 (1969)

    MathSciNet  Google Scholar 

  5. Feireisl E., Málek J., Novotný A., Straškraba I.: Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Commun. Partial Differ. Equ. 33, 157–176 (2007)

    Article  Google Scholar 

  6. Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Feireisl, E., Novotný, A., Petzeltová, H.: Low Mach number limit for the Navier-Stokes system on unbounded domains under strong stratification. Commun. Partial Differ. Equ. 35, 68–88 (2010)

    Article  MATH  Google Scholar 

  8. Feireisl E., Petzeltová H.: On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differ. Equ. 25(3–4), 755–767 (2000)

    Article  MATH  Google Scholar 

  9. Klein R.: Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249–274 (2010)

    Article  ADS  Google Scholar 

  10. Lighthill J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Lighthill J.: On sound generated aerodynamically II. General theory. Proc. R. Soc. Lond. A 222, 1–32 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Lions P.-L.: Mathematical Topics in Fluid Dynamics, vol. 2. Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  13. Lipps F.B., Hemler R.S.: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 2192–2210 (1982)

    Article  ADS  Google Scholar 

  14. Masmoudi N.: Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. 88, 230–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ogura Y., Phillips M.: Scale analysis for deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179 (1962)

    Article  ADS  Google Scholar 

  16. Wilcox, C.H.: Sound propagation in stratified fluids. In: Appl. Math. Ser. 50. Springer-Verlag, Berlin (1984)

  17. Wilcox C.H.: Spectral analysis of the Pekeris operator in the theory of acoustic wave propagation in shallow water. Arch. Ration. Mech. Anal. 60(3), 259–300 (1976)

    Article  MathSciNet  Google Scholar 

  18. Zeytounian R.Kh.: Asymptotic Modeling of Fluid Flow Phenomena. Kluwer, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by G.P. Galdi

The work of E. Feireisl was supported by Grant 201/08/0315 of GA ČR as a part of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E. Low Mach Number Limits of Compressible Rotating Fluids. J. Math. Fluid Mech. 14, 61–78 (2012). https://doi.org/10.1007/s00021-010-0043-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0043-9

Mathematics Subject Classification (2010)

Keywords

Navigation