Skip to main content
Log in

Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove existence of weak solutions for a diffuse interface model for the flow of two viscous incompressible Newtonian fluids in a bounded domain in two and three space dimensions. In contrast to previous works, we study a new model recently developed by Abels et al. for fluids with different densities, which leads to a solenoidal velocity field. The model is given by a non-homogeneous Navier–Stokes system with a modified convective term coupled to a Cahn–Hilliard system. The density of the mixture depends on an order parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Diffuse Interface Models for Two-Phase Flows of Viscous Incompressible Fluids. Habilitation Thesis, Leipzig (2007)

  2. Abels H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm. Math. Phys. 289, 45–73 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Abels H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Rat. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44(1), 316–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities. preprint Nr. 20/2010 University Regensburg (2010)

  6. Abels H., Garcke H., Grün G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Meth. Appl. Sci. 22(3), 1150013 (2011)

    Article  Google Scholar 

  7. Abels H., Röger M.: Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2403–2424 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Abels H., Wilke M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlin. Anal. 67, 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amann H.: Linear and Quasilinear Parabolic Problems, vol. 1: Abstract Linear Theory. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  10. Anderson, D.-M., McFadden, G.B., Wheeler, A.A.: Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech., vol. 30, pp. 139–165. Annual Reviews, Paolo Alto (1998)

  11. Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  12. Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Boyer F.: Nonhomogeneous Cahn–Hilliard fluids. Ann. Inst. H. Poincar Anal. Non Linaire 18(2), 225–259 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  ADS  Google Scholar 

  15. Diestel, J., Uhl, J.J., Jr.: Vector Measures. Am. Math. Soc., Providence (1977)

  16. Ding H., Spelt P.D.M., Shu C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comp. Phys. 22, 2078–2095 (2007)

    Article  ADS  Google Scholar 

  17. Gurtin M.E., Polignone D., Viñals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6(6), 815–831 (1996)

    Article  MATH  Google Scholar 

  18. Hohenberg P.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  19. Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  20. Lions P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  21. Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roubíček T.: A generalization of the Lions-Temam compact embedding theorem. Časopis Pěst Mat. 115(4), 338–342 (1990)

    MATH  Google Scholar 

  24. Showalter R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS, Providence (1997)

    MATH  Google Scholar 

  25. Simon J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Sohr, H.: The Navier–Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2001)

  27. Starovoĭtov, V.N.: On the motion of a two-component fluid in the presence of capillary forces. Mat. Zametki 62(2), 293–305 (1997) transl. in Math. Notes, 62(1–2), 244–254 (1997)

    Google Scholar 

  28. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  29. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  30. Zeidler E.: Nonlinear Functional Analysis and its Applications I. Springer, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Abels.

Additional information

Communicated by Y. Giga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abels, H., Depner, D. & Garcke, H. Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities. J. Math. Fluid Mech. 15, 453–480 (2013). https://doi.org/10.1007/s00021-012-0118-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-012-0118-x

Mathematics Subject Classification (2010)

Keywords

Navigation