Skip to main content
Log in

Besov Space Regularity Conditions for Weak Solutions of the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Consider a bounded domain\({{\Omega \subseteq \mathbb{R}^3}}\) with smooth boundary, some initial value \({{u_0 \in L^2_{\sigma}(\Omega )}}\), and a weak solution u of the Navier–Stokes system in \({{[0,T) \times\Omega,\,0 < T \le \infty}}\). Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space

$$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$

with \({{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}\); here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space \({{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}\), see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space \({{B^{q,s}(\Omega )}}\) in which the integral in time has to be considered only on finite intervals (0, δ ) with \({{\delta \to 0}}\). Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition \({{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}\). Finally, we obtain a large class of regular weak solutions u defined by a smallness condition \({{\|u_0\|_{B^{q,s}(\Omega )} \le K}}\) with some constant \({{K=K(\Omega, q)>0}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York (2002)

  2. Farwig R., Kozono H., Sohr H.: Local in time regularity properties of the Navier–Stokes equations. Indiana Univ. Math. J. 56, 2111–2131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Farwig R., Sohr H., Varnhorn W.: On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara 55, 89–110 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farwig R., Sohr H., Varnhorn W.: Extensions of Serrin’s uniqueness and regularity conditions for the Navier–Stokes equations. J. Math. Fluid Mech. 14, 529–540 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, New York (1994)

  6. Giga Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giga Y.: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Giga Y., Sohr H.: Abstract L q-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kozono H.: Uniqueness and regularity of weak solutions to the Navier–Stokes equations. Lecture Notes in Num. Appl. Anal. Kinokuniya, Tokyo, 16, 161–208 (1998)

    MathSciNet  Google Scholar 

  10. Kozono H., Sohr H.: Remark on uniqueness of weak solutions to the Navier–Stokes equations. Analysis 16, 255–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mikhailov, A.S., Shilkin, T.N.: L 3,∞-solutions to the 3D-Navier–Stokes system in a domain with a curved boundary. Zap. Nauchn. Semin. POMI 336, 133–152 (2006) Russian. J. Math. Sci. 143 (2007) (English)

    Google Scholar 

  12. Seregin G.: On smoothness of L 3,∞-solutions to the Navier–Stokes equations up to boundary. Math. Ann. 332, 219–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Serrin, J.: The initial value problem for the Navier–Stokes equations. Nonlinear Problems. Proc. Sympos. Madison, pp. 69–98 (1963)

  14. Sohr H.: The Navier–Stokes Equations. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  15. Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Temam R.: Navier–Stokes Equations. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  17. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwig, R., Sohr, H. & Varnhorn, W. Besov Space Regularity Conditions for Weak Solutions of the Navier–Stokes Equations. J. Math. Fluid Mech. 16, 307–320 (2014). https://doi.org/10.1007/s00021-013-0154-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0154-1

Mathematics Subject Classification (2000)

Keywords

Navigation