Skip to main content
Log in

From the Highly Compressible Navier–Stokes Equations to Fast Diffusion and Porous Media Equations, Existence of Global Weak Solution for the Quasi-Solutions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the compressible Navier–Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier–Stokes equations using solutions of the pressureless Navier–Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667–674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are \({C^{\infty}}\) on \({(0,T)\times \mathbb{R}^{N}}\) for any \({T > 0}\). Finally we show the convergence of the global weak solution of compressible Navier–Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to \({\mu(\rho)=\rho^{\alpha}}\) with \({\alpha > 1}\). Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density \({\rho_{0}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: The porous medium equation. In: Fasano, A., Primicerio, M. (eds.) Nonlinear diffusion problems, Montecatini Terme 1985, Lecture notes in mathematics, vol. 1224, Springer, Berlin

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

  3. Bénilan, P.: A strong regularity \({L^{p}}\) for solutions of the porous media equation. Research Notes in Math, vol. 89, pp. 39–58. Pitman, London (1983)

  4. Bénilan P., Crandall M.G.: The continuous dependence on \({\varphi}\) of solutions of \({u_{t}-\Delta\varphi(u)=0}\). Indiana Univ. Math. J. 30, 161–177 (1981)

    Article  MathSciNet  Google Scholar 

  5. Bénilan P., Crandall M.G., Pierre M.: Solutions of the porous medium in \({\mathbb{R}^{N}}\) under optimal conditions on the initial values. Indiana Univ. Math. J. 33, 51–87 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresch D., Desjardins B.: Some diffusive capillary models of Koretweg type. C. R. Math. Acad. Sci. Paris Sect. Mécanique 332(11), 881–886 (2004)

    MATH  Google Scholar 

  7. Bresch D., Desjardins B.: Existence of global weak solution for 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1-2), 211–223 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bresch D., Desjardins B.: Existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pure. Appl. 87(1), 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charve F., Haspot B.: Existence of strong solutions in a larger space for the shallow-water system. Adv. Differ. Equ. 17(11-12), 1085–1114 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Desjardins B., Grenier E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A 455(1986), 2271–2279 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Desjardins B., Grenier E., Lions P.-L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions. J. Math. Pure. Appl. 78, 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Del Pino, M., Dolbeault, J.: Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous medium problems. Preprint Ceremade no 9905, pp. 1–45 (1999)

  14. Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Feireisl, E.: Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2004)

  16. Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  17. Friedmann A., Kamin S.: The asymptotic behavior of gas in a n-dimensional porous medium. Trans. Am. Math. Soc. 262(2), 551–563 (1980)

    MathSciNet  MATH  Google Scholar 

  18. Haspot B.: Existence of global strong solutions in critical spaces for barotropic viscous fuids. Arch. Ration. Mech. Anal. 202(2), 427–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haspot B.: Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces. J. Differ. Equ. 251(8), 2262–2295 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Haspot B.: Existence of global strong solution for the compressible Navier–Stokes system and the Korteweg system in two-dimension. Methods Appl. Anal. 20(2), 141–164 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Haspot B.: Global existence of strong solution for the Saint–Venant system with large initial data on the irrotational part. C. R. Math. Acad. Sci. Paris 350(N 5-6), 229–332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haspot B.: Existence of global strong solutions for the barotropic Navier–Stokes system system with large initial data on the rotational part of the velocity. C. R. Math. Acad. Sci. Paris. 350, 487–492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haspot, B.: Porous media equations, fast diffusions equations and the existence of global weak solution for the quasi-solutions of compressible Navier–Stokes equations. In: Hyperbolic problems: theory, numerics, applications—proceedings of the 14th international conference on hyperbolic problems held in Padova, June 25–29, (2012). pp. 667–674 (2014)

  24. Haspot, B.: Global existence of strong solution for shallow water system with large initial data on the irrotational part. Preprint arXiv:1201.5456

  25. Haspot, B.: Existence of global strong solution for Korteweg system with large infinite energy initial data. Preprint hal-00789782 (2013)

  26. Haspot, B.: New formulation of the compressible Navier–Stokes equations and parabolicity of the density. Preprint hal-01081580. arXiv:1411.5501, 11 (2014)

  27. Haspot, B.: Existence of global strong solution for the compressible Navier–Stokes equations with degenerate viscosity coefficients in 1D. Preprint hal-01082319. arXiv:1411.5503, 11 (2014)

  28. Kamin S., Vázquez J-.L.: Fundamental solutions and asymptotic behavior for the p-Laplacian equation. Rev. Mat. Iberoamericana 4(2), 339–354 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kamin S., Vázquez J.-L.: Asymptotic behavior of solutions of the porous media equation with changing sign. SIAM J. Math. Anal. 22(1), 34–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs. American Mathematical Society, vol. 23. Providence, RI (1968)

  31. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pure. Appl. 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Srie I 329, 387–392 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

  34. Mellet A., Vasseur A.: On the barotropic compressible Navier–Stokes equations. Comm. Partial Differ. Equ. 32(1-3), 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pedlosky J.: Geophysical Fluid Dynamics. Springer Verlag, Berlin Heidelberg-New York (1987)

    Book  MATH  Google Scholar 

  36. Pierre M.: Uniqueness of the solutions of \({u_{t}-\Delta\phi(u)=0}\) with initial datum a measure. . T. M. A. 6, 175–187 (1982)

    Article  MathSciNet  Google Scholar 

  37. Sacks, P.: Continuity of solutions of a singlar parabolic equation. Nonlinear Anal. 7, 387–409 (1983)

  38. Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Preprint arXiv:1501.06803, 03 (2015)

  39. Vázquez, J.-L.: The porous medium equation: mathematical theory. Oxford mathematical monographes. The Clarendon Press, Oxford University Press, Oxford (2007)

  40. Vázquez, J.-L.: Smoothing and decay estimates for nonlinear diffusion equations: equations of porous medium type. Oxford lecture series in mathematics and its applications. Oxford University Press, Oxford (2006)

  41. Vázquez J.-L.: Asymptotic behavior for the porous medium equation posed in the whole space. J. Evol. Emu. 3, 67–118 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Haspot.

Additional information

Communicated by I. Straskraba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haspot, B. From the Highly Compressible Navier–Stokes Equations to Fast Diffusion and Porous Media Equations, Existence of Global Weak Solution for the Quasi-Solutions. J. Math. Fluid Mech. 18, 243–291 (2016). https://doi.org/10.1007/s00021-015-0226-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0226-5

Mathematics Subject Classification

Keywords

Navigation