Skip to main content
Log in

On Time-Fractional Diffusion Equations with Space-Dependent Variable Order

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This paper deals with mathematical problems related to space-dependent anomalous diffusion processes. Namely, we investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We establish that variable-order time-fractional Cauchy problems admit a unique weak solution and prove that the space-dependent variable-order coefficient is uniquely determined by the knowledge of a suitable time sequence of partial initial-boundary maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour. Res. 28, 3293–3307 (1992)

    Article  ADS  Google Scholar 

  2. Agarwal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  Google Scholar 

  3. Allen, M., Caffarelli, L., Vasseur, A.: A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221, 603–630 (2016)

    Article  MathSciNet  Google Scholar 

  4. Atangana, A., Oukouomi Noutchie, S.C.: Stability and convergence of a time-fractional variable order Hantush aquation for a deformable aquifer. Abstr. Appl. Anal. 2013, 1–8 (2013)

    MATH  Google Scholar 

  5. Beckers, S., Yamamoto, M.: Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives. Int. Ser. Numer. Math. 164, 45–55 (2013)

    MATH  Google Scholar 

  6. Carcione, J., Sanchez-Sesma, F., Luzón, F., Perez Gavilán, J.: Theory and simulation of time-fractional fluid diffusion in porous media. J. Phys. A Math. Theor. 46, 345501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cheng, J., Lin, C.-L., Nakamura, G.: Unique continuation property for the anomalous diffusion and its application. J. Differ. Equ. 254, 3715–3728 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cheng, J., Xiang, X., Yamamoto, M.: Carleman estimate for a fractional diffusion equation with half order and application. Appl. Anal. 90, 1355–1371 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cheng, M., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one dimensional fractional diffusion equation. Inverse Probl. 25, 115002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, W., Zhang, J., Zhang, J.: Variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 13(1), 76–84 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Fedotov, S., Steven, F.: Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys. Rev. E 85, 031132 (2012)

    Article  ADS  Google Scholar 

  12. Fujishiro, K., Kian, Y.: Determination of time dependent factors of coefficients in fractional diffusion equations. Math. Control Relat. Fields 6, 251–269 (2016)

    Article  MathSciNet  Google Scholar 

  13. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  ADS  Google Scholar 

  14. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, 799–820 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gorenflo, R., Mainardi, F.: Fractional diffusion processes: probability distributions and continuous time random walk. In: Rangarajan, G., Ding, M. (eds.) Processes with Long Range Correlations. Lecture Notes in Physics, vol. 621, pp. 148–166. Springer, Berlin (2003)

    Chapter  Google Scholar 

  16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  17. Hatano, Y., Nakagawa, J., Wang, S., Yamamoto, M.: Determination of order in fractional diffusion equation. J. Math. Ind. 5A, 51–57 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Holland, S.S.: On the adjoint of the product of operators. J. Func. Anal. 3, 337–344 (1969)

    Article  MathSciNet  Google Scholar 

  19. Imanuvilov, O., Yamamoto, M.: Inverse boundary value problem for Schrödinger equation in two dimensions. SIAM J. Math. Anal. 44, 1333–1339 (2012)

    Article  MathSciNet  Google Scholar 

  20. Imanuvilov, O., Yamamoto, M.: Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries. Milan J. Math. 81, 187–258 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1980)

    MATH  Google Scholar 

  22. Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007)

    Article  MathSciNet  Google Scholar 

  23. Kian, Y., Oksanen, L., Soccorsi, E., Yamamoto, M.: Global uniqueness in an inverse problem for time-fractional diffusion equations. J. Differ. Equ. 264(2), 1146–1170 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, 117–138 (2017)

    Article  MathSciNet  Google Scholar 

  25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  26. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  Google Scholar 

  27. Kubica, A., Yamamoto, M.: Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 21(2), 276–311 (2018)

    Article  MathSciNet  Google Scholar 

  28. Li, Z., Imanuvilov, O.Y., Yamamoto, M.: Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32, 015004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, Z., Kian, Y., Soccorsi, E.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Preprint arXiv:1709.06823

  30. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problem for multi-term time fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)

    Article  MathSciNet  Google Scholar 

  32. Lin, C., Nakamura, G.: Unique continuation property for anomalous slow diffusion equation. Commun. Partial Differ. Equ. 41(5), 749–758 (2016)

    Article  MathSciNet  Google Scholar 

  33. Luchko, Y.: Initial-boundary value problems for the generalized time-fractional diffusion equation. In: Proceedings of 3rd IFAC Workshop on Fractional Differentiation and its Applications (FDA08), Ankara, Turkey (2008)

  34. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(4), 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Luchko, Y., Rundell, W., Yamamoto, M., Zuo, L.: Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Probl. 29(6), 065019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  37. Orsingher, E., Ricciutti, C., Toaldo, B.: On semi-Markov processes and their Kolmogorov’s integro-differential equations. J. Funct. Anal. 275(4), 830–868 (2018)

    Article  MathSciNet  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, London (1975)

    MATH  Google Scholar 

  40. Ricciutti, C., Toaldo, B.: Semi-Markov models and motion in heterogeneous media. J. Stat. Phys. 169(2), 340–361 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. Rudin, W.: Real and Complex Analysis. McGraw Hill, New York (1987)

    MATH  Google Scholar 

  42. Rundell, W., Xu, X., Zuo, L.: The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. 92(7), 1511–1526 (2013)

    Article  MathSciNet  Google Scholar 

  43. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  44. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  45. Smit, W., de Vries, H.: Rheological models containing fractional derivatives. Rheol. Acta 9, 525–534 (1970)

    Article  Google Scholar 

  46. Stickler, B.A., Schachinger, E.: Continuous time anomalous diffusion in a composite medium. J. Phys. E 84, 021116 (2011)

    Google Scholar 

  47. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586–4592 (2009)

    Article  ADS  Google Scholar 

  48. Wang, R., Chen, D., Xiao, T.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  49. Yamamoto, M., Zhang, Y.: Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate. Inverse Probl. 28, 105010 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  50. Zacher, R.: Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. Funkcialaj Ekvacioj 52, 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  51. Zhang, H., Li, G.-H., Luo, M.-K.: Fractional Feynman-Kac equation with space-dependent anomalous exponent. J. Stat. Phys. 152, 1194–1206 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The two first authors would like to thank the Department of Mathematical Sciences of The University of Tokyo, where part of this article was written, for its kind hospitality. All the authors are partially supported by Grants-in-Aid for Scientific Research (S) 15H05740 and (S) 26220702, Japan Society for the Promotion of Science. The publication has been prepared with the support of the “RUDN University Program 5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Soccorsi.

Additional information

Communicated by Claude-Alain Pillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, Y., Soccorsi, E. & Yamamoto, M. On Time-Fractional Diffusion Equations with Space-Dependent Variable Order. Ann. Henri Poincaré 19, 3855–3881 (2018). https://doi.org/10.1007/s00023-018-0734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0734-y

Navigation