Skip to main content
Log in

A Mathematical Model of the Global Ocean Saltwater Density Distribution

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We formulate a functional model which closely approximates the actual seawater density distribution. The methodology of finding a theoretical density model is based on the analysis of the global data of pressure/depth, salinity, and temperature from the World Ocean Atlas 2009 (provided by NOAA’s National Oceanographic Data Center) and the World Ocean Circulation Experiment 2004 (provided by the German Federal Maritime and Hydrographic Agency). The seawater density values are calculated according to the thermodynamic equation of seawater TEOS‐10. The global seawater density model is defined as a function of the ocean depth (to account for density variations due to pressure) and geographical latitude (to account for density variations due to salinity and temperature). A more complex functional density model is formulated to account for a large seawater density gradient within the pycnocline caused mainly by a combination of decreasing water temperature and increasing salinity with depth. The results of numerical analysis reveal that the new functional model based on the depth and latitudinal density variations approximates the actual seawater density distribution with a relative accuracy better than 0.45%. When incorporating the pycnocline density gradient correction, the accuracy further improves to about 0.25% (except for the shelf seas with the presence of the continental hydrological signal and other oceanographic factors). The results also show that the average seawater density (estimated from the experimental data used in this study) is 1038.5 ± 2.4 kg/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E. (2010), World Ocean Atlas 2009, Volume 2: Salinity, S Levitus (Ed), NOAA Atlas NESDIS 69, US Government Printing Office, Washington, DC, 184 pp.

  • Chen, C-T., Millero, F. J. (1978), The equation of state of seawater determined from sound speeds. J Mar Res 36, 657–691.

  • Ekman, V. W. (1908). Die Zusammendrueckbarkeit des Meerwassers nebst einigen werten fuer Wasser und Quecksilber, Publication de circonstance. Conseil permanent international pour l’exploration de la mer 43:1–47

  • Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I. (2010a), World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, S Levitus (Ed), NOAA Atlas NESDIS 70, US Government Printing Office, Washington, DC, 344 pp.

  • Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I. (2010b), World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), S Levitus (Ed), NOAA Atlas NESDIS 71, US Government Printing Office, Washington, DC, 398 pp.

  • Garrison, T., Essentials of oceanography (Pacific Grove, CA, Brooks Cole 2001).

  • Gouretski, V.V., Koltermann, K.P., Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 35/2004.

  • IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp.

  • Johnson, D.R., Garcia, H.E., Boyer, T.P. (2009), World Ocean Database 2009 Tutorial, S Levitus (Ed), NODC Internal Report 21, NOAA Printing Office, Silver Spring, MD, 18 pp.

  • Kaban, M.K., Schwintzer, P. (2001), Oceanic upper mantle structure from experimental scaling of Vs. and density at different depths, Geophys. J. Int. 147, 199–214.

  • Kaban, M.K., Schwintzer, P., Reigber, Ch. (2004), A new isostatic model of the lithosphere and gravity field, J. Geod. 78, 368–385.

  • Kaban, M.K., Schwintzer, P., Tikhotsky, S.A. (1999), Global isostatic gravity model of the Earth, Geophys. J. Int. 136, 519–536.

  • Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D. (2003), Density of the continental roots: compositional and thermal contributions, Earth Planet Sci. Lett. 209, 53–69.

  • Kundsen, M., Hydrographical Tables (GEC, Gad, Copenhagen, 1901)

  • Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E. (2010), World Ocean Atlas 2009, Volume 1: Temperature, S Levitus (Ed), NOAA Atlas NESDIS 68, US Government Printing Office, Washington, DC, 184 pp.

  • Millero, F.J. (2000), Effects of changes in the composition of seawater on the density–salinity relationship, Deep-Sea Research 47, 1583–1590.

  • Millero, F.J., Emmet, R.T. (1976), The effect of dissolved air and natural isotopic distributions on the density of water, Journal of Marine Research 34, 15–24.

  • Millero, F.J., Kremling, K. (1976), The densities of Baltic Sea Waters, Deep-Sea Research 23, 1129–1138.

  • Millero, F.J., Poisson, A. (1981a), International one-atmosphere equation of state of seawater, Deep-Sea Research 28, 625–629.

  • Millero, F.J., Poisson, A. (1981b), Density of seawater and the new International Equation of State of Seawater 1980, IMS Newsletter, Number 30, Wright (Ed), Special Issue 1981–1982, UNESCO, Paris, France, p 3.

  • Millero, F.J., Gonzalez, A., Ward, G.K. (1976), The density of seawater solutions at one atmosphere as a function of temperature and salinity, Journal of Marine Research 34, 61–93.

  • Millero, F.J., Chetirkin, P.V., Culkin, F. (1977), The relative conductivity and density of standard seawaters, Deep-Sea Research 24, 315–321.

  • Millero, F.J., Forsht, D., Means, D., Gieskes, J., Kenyon, K. (1978), The density of North Pacific Ocean waters, J. Geoph. Res. 83, 2359–2364.

  • Millero, F.J., Chen, C-T., Bradshaw, A., Schleicher, K. (1980), A new high pressure equation of state for seawater, Deep-Sea Research 27, 255–264.

  • Millero, F.J., Feistel, R., Wright, D.G., McDougall, T.J. (2008), Deep Sea Research Part I, Oceanographic Research Papers 55(1), 50–72.

  • Saunders, P.M., Fofonoff, N.P. (1976), Conversion of pressure to depth in the ocean. Deep Sea Research 23, 109–111.

  • Stewart, R.H., Introduction to Physical Oceanography (Texas A & M University, 2008).

  • Tenzer, R., Hamayun, Vajda, P. (2008a), Global secondary indirect effects of topography, bathymetry, ice and sediments. Contributions to Geophysics and Geodesy 38(2), 209–216.

  • Tenzer, R., Hamayun, Vajda, P. (2008b), Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments, Contributions to Geophysics and Geodesy 38(4), 357–370.

  • Tenzer, R., Hamayun, Vajda, P. (2009), Global maps of the CRUST 2.0 crustal components stripped gravity disturbances, Journal Geophysical Research 114(B05408).

  • Tenzer, R., Vajda, P., Hamayun (2010), A mathematical model of the bathymetry-generated external gravitational field, Contributions to Geophysics and Geodesy 40(1), 31–44.

  • Vajda, P., Ellmann, A., Meurers, B., Vaníček, P., Novák, P., Tenzer, R. (2008), Global ellipsoid-referenced topographic, bathymetric and stripping corrections to gravity disturbance, Studia Geophysica et Geodaetica 52, 19–34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladkikh, V., Tenzer, R. A Mathematical Model of the Global Ocean Saltwater Density Distribution. Pure Appl. Geophys. 169, 249–257 (2012). https://doi.org/10.1007/s00024-011-0275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0275-5

Keywords

Navigation