Skip to main content
Log in

The Mechanical Coupling of Fluid-Filled Granular Material Under Shear

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain–fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Area of a grid cell

A i :

Area of grain i

A s :

Weighted area of grains along a grid point

D :

Diffusion coefficient

D i :

Internal diffusion coefficient (accounting only for k i )

De:

Dimensionless Deborah number

d :

Characteristic grain diameter

E :

Grains bulk modulus

F ij :

Interaction force at the contact between grain i and grain j

F n ij :

Normal component of the interaction force

F s ij :

Shear component of the interaction force

I i :

Moment of inertia of grains i

k b :

Boundary permeability

k c :

Permeability prefactor

k i :

Internal permeability

k 0 :

Permeability scale factor

\(\tilde{k}_n\) :

Nonlinear normal stiffness

\(\tilde{k}_s\) :

Nonlinear tangential stiffness

LP:

Dimensionless liquefaction potential

l :

Length scale

l x :

Horizontal grid spacing

l y :

Vertical grid spacing

m i :

Mass of grain i

m ij :

Harmonic mean of the masses of grains i and j

\(\hat{{\mathbf{n}}}_{{\mathbf{ij}}}\) :

Unit vector normal to the contact between grains i and j

P :

Pore fluid pressure

R i :

Radius of grain i

R ij :

Harmonic mean of the radii of grains i and j

r ij :

Distance between the centers of grains i and j

\({\mathbf{r}}_{{\mathbf{ij}}}\) :

Vector connecting the centers of grains i and j

\(\dot{{\mathbf{r}}}_{{\mathbf{ij}}}\) :

Relative velocity between grains i and j

\(\hat{{\mathbf{s}}}_{{\mathbf{ij}}}\) :

Unit vector tangent to a contact between grains i and j

s :

Interpolation (weighting) function

\(\Updelta s\) :

Shear displacement since the formation of a contact between grains

t :

Time

t 0 :

Time-scale of deformation

t d :

Time-scale of diffusion

u i :

Translational velocity vector of grain i

u f :

Velocity field of the pore fluid

u s :

Smoothed velocity field of the granular phase

u sz :

Horizontally averaged z component of the solid velocity

u 0 :

Velocity scale factor

V i :

Volume of grain i

V sh :

Applied shear velocity

w i :

Rotational velocity vector of grain i

x :

Coordinate of a grid point

x i :

Coordinate of the center of grain i

z :

Vertical distance from the center of a granular layer

α :

Effective stress coefficient

β :

Adiabatic fluid compressibility

γ :

Damping coefficient

δ :

Thickness of a thin boundary layer (where k b is the permeability)

\(\epsilon\) :

Strain

\(\zeta\) :

Half thickness of a granular layer

η :

Fluid viscosity

λ :

Statistical factor for liquefaction potential

μ :

Surface friction coefficient

μ a :

Apparent friction, τ/σ n

ν :

Grains Poisson’s ratio

ξ ij :

Overlap between grains i and j

ρ f :

Density of the pore fluid

ρ s :

Density of the bulk material of the grains

ρ 0 :

Fluid density at hydrostatic pressure level

σ ij :

Stress tensor

σ ij ′:

Effective stress tensor

σ n :

Normal stress to a shear surface

τ :

Shear stress

\(\Upphi\) :

Porosity

\(\langle\Upphi(z,t)\rangle\) :

Average porosity between the center of the grains layer and distance z from it

References

  • E. Aharonov and D. Sparks. Rigidity phase transition in granular packings. Phys. Rev. E, 60(6):6890–6896, 1999. doi:10.1103/PhysRevE.60.6890.

  • E. Aharonov and D. Sparks. Shear profiles and localization in simulations of granular materials. Phys. Rev. E, 65(5), 2002. doi:10.1103/PhysRevE.65.051302.

  • M. H. Anders, E. Aharonov, and J. J. Walsh. Stratified granular media beneath large slide blocks: Implications for mode of emplacement. Geology, 28(11):971–974, 2000.

  • R. Bachrach, A. Nur, and A. Agnon. Liquefaction and dynamic poroelasticity in soft sediments. J. Geophys. Res., 106(B7):13515–13526, 2001.

  • M. A. Biot. General theory for three-dimensional consolidation. J. Appl. Phys., 12(155), 1941.

  • M. L. Blanpied, D. A. Lockner, and J. D. Byerlee. An earthquake mechanism based on rapid sealing of faults. Nature, 358(6387):574–576, 1992.

  • A.-M. Boullier, E.-C. Yeh, S. Boutareaud, S.-R. Song, and C.-H. Tsai. Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochem. Geophys. Geosy., 10, 2009. doi:10.1029/2008GC002252.

  • G. Castro. Liquefaction and cyclic mobility of saturated sand. J. Geotech. Eng. Div., ASCE, 101(6):551–569, 1975.

  • K. O. Cetin, N. Isik, and B. Unutmaz. Seismically induced landslide at Degirmendere Nose, Izmit bay during Kocaeli (Izmit)-Turkey earthquake. Soil Dyn. Earthquake Eng., 24(3):189–197, 2004. doi:10.1016/j.soildyn.2003.11.007.

  • P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies. Géotechnique, 29(1):47–65, 1979.

  • M. B. Das. Principles of Soil Mechanics. PWS-Kent, Boston, Mass., 1993.

  • U. El Shamy and M. Zeghal. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dyn. Earthquake Eng., 27(8):712–729, 2007. doi:10.1016/j.soildyn.2006.12.010.

  • W. D. L. Finn, D. J. Pickering, and P. L. Bransby. Sand liquefaction in triaxial and simple shear tests. J. Soil Mech. Found. Div. Proc., 97(4):639–659, 1971.

  • E. G. Flekkøy, A. Malthe-Sørenssen, and B. Jamtveit. Modeling hydrofracture. J. Geophys. Res., 107(B8), 2002. doi:10.1029/2000JB000132.

  • E. J. Gabet and S. M. Mudd. The mobilization of debris flows from shallow landslides. Geomorphology, 74:207–218, 2006. doi:10.1016/j.geomorph.2005.08.013.

  • V. K. Garga and H. Zhang. Volume changes in undrained triaxial tests on sands. Can. Geotech. J., 34:762–772, 1997.

  • L. Goren, E. Aharonov, D. Sparks, and R. Toussaint. Pore pressure evolution in deforming granular material: A general formulation and the infinitely stiff approximation. J. Geophys. Res., 115(B09216), 2010. doi:10.1029/2009JB007191.

  • R. M. Iverson. Differential-equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium. Math. Geol., 25(8):1027–1048, 1993.

  • R. M. Iverson and R. G. LaHusen. Dynamic pore-pressure fluctuations in rapidly shearing granular-material. Science, 246(4931):796–799, 1989.

  • R. M. Iverson, M. E. Reid, N. R. Iverson, R. G. LaHusen, M. Logan, J. E. Mann, and D. L. Brien. Acute sensitivity of landslide rates to initial soil porosity. Science, 290(5491):513–516, 2000. doi:10.1126/science.290.5491.513.

  • Ø. Johnsen, R. Toussaint, K. L. Måløy, and E. G. Flekkøy. Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell. Phys. Rev. E, 74(1), 2006. doi:10.1103/PhysRevE.74.011301.

  • Ø. Johnsen, R. Toussaint, K. J. Måløy, E. G. Flekkøy, and J. Schmittbuhl. Coupled air/granular flow in a linear Hele-Shaw cell. Phys. Rev. E, 77(1), 2007. doi:10.1103/PhysRevE.77.011301.

  • Ø. Johnsen, C. Chevalier, A. Lindner, R. Toussaint, E. C. K. J. Måløy, E. G. Flekkøy, and J. Schmittbuhl. Decompaction and fluidization of a saturated and confined granular medium by injection of a viscous liquid or a gas. Phys. Rev. E, 78(5), 2008. doi:10.1103/PhysRevE.78.051302.

  • P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular flows. Nature, 441(7094):727–730, 2006. doi:10.1038/nature04801.

  • F. Kawakami and A. Asada. Damage to the ground and earth structures by the Niigata earthquake of June 16,1964. Soil and Foundation, 6(1):14–30, 1966.

  • M. V. Kostadinov and I. Towhata. Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon. Soil Dyn. Earthquake Eng., 22(4):309–322, 2002. doi:10.1016/S0267-7261(02)00018-0)

  • V. G. Kozlov, A. A. Ivanova, and P. Evesque. Sand behavior in a cavity with incompressible liquid under vertical vibrations. Europhys. Lett., 42(3):413–418, 1998.

  • S. L. Kramer. Geotechnical earthquake engineering. Prentice Hall, Inc., Upper Saddle River, New Jersey, 1996.

  • D. A. Lockner and J. D. Byerlee. Dilatancy in hydraulically isolated faults and the suppression of instability. Geophys. Res. Lett., 21(22), 1994.

  • C. Marone, C. B. Raleigh, and C. H. Scholz. Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res., 95:7007–7025, 1990.

  • S. McNamara, E. G. Flekkøy, and K. J. Måløy. Grains and gas flow: Molecular dynamics with hydrodynamic interactions. Phys. Rev. E, 61(4):4054–4059, 2000.

  • S. A. Miller and A. Nur. Permeability as a toggle switch in fluid-controlled crustal processes. Earth Planet. Sci. Lett., 183:133–146, 2000.

  • P. L. Moore and N. R. Iverson. Slow episodic shear of granular materials regulated by dilatant strengthening. Geology, 30(9):843–846, 2002.

  • M. J. Niebling, E. G. Flekkøy, K. J. Måløy, and R. Toussaint. Sedimentation instabilities: Impact of the fluid compressibility and viscosity. Phys. Rev. E, 82(5), 2010. doi:10.1103/PhysRevE.82.051302.

  • A. Nur and J. D. Byerlee. An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res., 76(26):6414–6419, 1971.

  • Y. Okada and H. Ochiai. Coupling pore-water pressure with distinct element method and steady state strengths in numerical triaxial tests under undrained conditions. Landslides, 4:357–369, 2007. doi:10.1007/s10346-007-0092-1.

  • T. Osswald. Polymer Processing Fundamental. Hanser/Gardner, Cincinnati, Ohio, 1998.

  • W. H. Peacock and H. B. Seed. Sand liquefaction under cyclic loading simple shear conditions. J. Soil Mech. Found. Div. Proc., 94(SM3):689–708, 1968.

  • O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas. Flow of dense granular material: towards simple constitutive laws. J. Stat. Mech: Theory Exp., JUL 2006. doi:10.1088/1742-5468/2006/07/P07020.

  • S. R. Pride. Relationships between seismic and hydrological properties. In Y. Rubin and S. S. Hybbard, editors, Hydrogeophysics, pages 253–291. Springer, Netherlands, 2005.

  • J. F. Richardson. Incipient fluidization and particulate system. In J. F. Davidson and D. Harrison, editors, Fluidization, pages 25–64. Academic Press, London, 1971.

  • P.-Y. F. Robin. Note on effective pressure. J. Geophys. Res., 78(14):2434–2437, 1973.

  • L. Rondon, O. Pouliquen, and P. Aussillous. Granular collapse in a fluid: role of the initial volume fraction. Physics of Fluids. 2011, accepted

  • J. W. Rudnicki and C. H. Chen. Stabilization of rapid frictional slip on a weakening fault by dilatant hardening. J. Geophys. Res., 93(B5):4745–4757, 1988.

  • M. O. Saar and M. Manga. Depth dependence of permeability in the Oregon Cascades inferred from hydrologic, thermal, seismic and magnetic modeling constraints. J. Geophys. Res., 109(B04204), 2004. 10.1029/2003JB002855.

  • A. Sagy and E. E. Brodsky. Geometric and rheological asperities in an exposed fault zone. J. Geophys. Res., 114, 2009. doi:10.1029/2008JB005701.

  • J. Samuelson, D. Elsworth, and C. Marone. Shear induced dilatancy of fluid saturated faults: experiment and theory. J. Geophys. Res., 2009. Submitted.

  • A. Sawicki and J. Mierczynski. Developments in modeling liquefaction of granular soils, caused by cyclic loads. Appl. Mech. Rev., 59:91–106, 2006. doi:10.1115/1.2130362.

  • J. Schäfer, S. Dippel, and D. E. Wolf. Force Schemes In Simulations If Granular Materials. J. Phys. I France, 6:5–20, 1996.

  • C. H. Scholz. Velocity anomalies in dilatant rock. Science, 201(4354):441–442, 1978.

  • C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, UK, 2002.

  • C. H. Scholz, L. R. Sykes, and Y. P. Aggarwal. Earthquake prediction—physical basis. Science, 181(4102):803–810, 1973.

  • H. B. Seed. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J. Geotech. Geoenviron. Eng. Div., ASCE, 105:201–255, 1979.

  • H. B. Seed and K. L. Lee. Liquefaction of saturated sand during cyclic loading. J. Soil Mech. Found. Div. Proc., ASCE, 92(SM6):105–134, 1966.

  • H. B. Seed, J. Lysmer, and P. P. Martin. Pore-water pressure changes during soil liquefaction. J. Geotech. Eng. Div., ASCE, 102(4):323–346, 1976.

  • P. Segall and J. R. Rice. Dilatancy, compaction, and slip instability of fluid-infiltrated fault. J. Geophys. Res., 100(B11):22155–22171, 1995.

  • A. Snieder and A. van der Beukel. The liquefaction cycle and the role of drainage in liquefaction. Granular Matter, 6, 2004. doi:10.1007/s100035-0030151-9.

  • K. Soga. Soil liquefaction effects observed in the Kobe earthquake of 1995. Proceedings Of The Institution Of Civil Engineers-Geotechnical Engineering, 131(1):34–51, 1998.

  • K. Terzaghi. Theoretical Soil Mechanics. John Wiley, New York, 1943.

  • J. L. Vinningland, Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy. Granular Rayleigh–Taylor instability: Experiments and simulations. Phys. Rev. Lett., 99(4), 2007a. doi:10.1103/PhysRevLett.99.048001.

  • J. L. Vinningland, Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy. Experiments and simulations of a gravitational granular flow instability. Phys. Rev. E, 76(5), 2007b. doi:10.1103/PhysRevE.76.051306.

  • J. L. Vinningland, O. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy. Size invariance of the granular Rayleigh–Taylor instability. Phys. Rev. E, 81(4), 2010. doi:10.1103/PhysRevE.81.041308.

  • M. Vucetic. Cyclic threshold shear strains in soils. J. Geotech. Eng., ASCE, 120(12):2208–2228, 1994.

  • J. Walder and A. Nur. Porosity reduction and crustal pore pressure development. J. Geophys. Res., 89(B13):11539–11548, 1984.

  • H. F. Wang. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton, NJ, 2000.

  • T. L. Youd. Compaction of sands by repeated shear straining. J. Soil Mech. and Found. Eng. Div., ASCE, 98:709–725, 1972.

  • O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler, and T. Shiomi. Computational Geomechanics with Special Reference to Earthquake Engineering. J. Wiley, Chichester, 1999.

Download references

Acknowledgments

RT acknowledges the support of the CNRS INSU program, the regional REALISE program, the ANR SISCA program, and the European SAFELAND program. We thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Goren.

Appendix 1: Pore Fluid Pressure Evolution for De ≪ 1

Appendix 1: Pore Fluid Pressure Evolution for De ≪ 1

In this section, the evolution of pore pressure is studied for drained boundaries with De ≪ 1. Under such conditions, the time-dependent term in Eqs. 15 and 18 becomes negligible compared with the diffusion term because De ≪ 1 in the non-dimensional Eq. 30. Equation 15 then becomes:

$$ \nabla \cdot\left[k({\mathbf{x}},t)\nabla P({\mathbf{x}},t)\right] = \eta\nabla\cdot{\mathbf{u_s}}({\mathbf{x}},t). $$
(44)

Formulation similar to Eq. 44 was developed by Iverson (1993) for drained conditions. For the 1D case, after integration, Eq. 44 becomes:

$$ \frac{\partial P(z,t)}{\partial z} = \frac{\eta}{k_0}u_{sz}(z,t) + C(t), $$
(45)

where C(t) is an integration factor, k(zt) is approximated as the permeability scale factor, k 0, and u sz is the horizontally averaged z component of the solid velocity. In order to express the pressure as a function of the temporal derivative of the porosity, \(\partial \Upphi/\partial t\) as in Eq. 18, we use the 1D form of Eq. 17:

$$ \frac{\partial u_{sz}}{\partial z} = \frac{1}{1-\Upphi}\frac{\partial \Upphi}{\partial t}. $$
(46)

Integrating Eq. 46 between the center of the layer at z = 0 and some distance z from the center (Fig. 7) results in:

$$ \begin{aligned} \int_0^z \frac{\partial u_{sz}(z^{\prime},t)}{\partial z^{\prime}}\hbox{d}z^{\prime} =& \int_0^z \frac{1}{1-\Upphi(z^{\prime},t)}\frac{\partial \Upphi(z^{\prime},t)} {\partial t}\hbox{d}z^{\prime}\\ =& \int_0^z -\frac{\partial [\ln(1-\Upphi(z^{\prime},t))]}{\partial t}\hbox{d}z^{\prime}\\ =& -\frac{\partial}{\partial t}\int_0^z \ln(1-\Upphi(z^{\prime},t))\hbox{d}z^{\prime}\\ \approx& -\frac{\partial}{\partial t}\int_0^z \left( -\Upphi(z^{\prime},t) - \frac{\Upphi(z^{\prime},t)^2}{2}\right)\hbox{d}z^{\prime}\\ \approx & -\frac{\partial}{\partial t}\int_0^z -\Upphi(z^{\prime},t) \hbox{d}z^{\prime} \\ =& \frac{\partial\langle\Upphi(z,t)\rangle}{\partial t}z, \\ \end{aligned} $$
(47)

where \(\langle\Upphi(z,t)\rangle\) is the average porosity between the system’s center and distance z from the center. Equation 47 then leads to the relationship:

$$ u_{sz}(z,t) = u_{sz}(0,t) + \frac{\partial\langle\Upphi(z,t)\rangle}{\partial t}z. $$
(48)

Substituting Eq. 48 in Eq. 45 results in:

$$ \frac{\partial P(z,t)}{\partial z} = \frac{\eta}{k_0}\frac{\partial\langle\Upphi(z,t)\rangle}{\partial t}z + C_1(t). $$
(49)

Integrating Eq. 49 between the layer’s center and distance z leads to:

$$ P(z,t) = P(0,t) + \frac{\eta}{k_0}\frac{\hbox{d}\langle\Upphi(z,t)\rangle}{\hbox{d} t}\frac{z^2}{2} + C_1(t) z, $$
(50)

where the rate of change of the average porosity, \(\hbox{d}\langle\Upphi(z,t)\rangle/\hbox{d} t,\) is approximated as uniform in space. Requiring complete drainage across the boundaries, i.e. \(P(\zeta,t) = P(-\zeta,t) = 0,\) Eq. 50 leads to:

$$ P(z,t) = -\frac{\eta}{2k_0}\frac{\hbox{d}\langle\Upphi(\zeta,t)\rangle}{\hbox{d} t}\left(\zeta^2 - z^2\right). $$
(51)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goren, L., Aharonov, E., Sparks, D. et al. The Mechanical Coupling of Fluid-Filled Granular Material Under Shear. Pure Appl. Geophys. 168, 2289–2323 (2011). https://doi.org/10.1007/s00024-011-0320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0320-4

Keywords

Navigation