Skip to main content
Log in

A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K. and Shuto, N. (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl. Geophys. 164, 577–592

  • Berryman, K. (Compiler), 2005. "Review of Tsunami Hazard and Risk in New Zealand". Institute of Geological & Nuclear Sci- ences, Client Report 2005/104, Wellington

  • Bommer, J.J. (2002). Deterministic vs. probabilistic seismic hazard assessment: an exaggerated and obstructive dichotomy, Journal of Earthquake Engineering 6 (special issue no. 1), 43–73.

  • Borrero, J.C. (2005). Field survey of northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004, Seism. Res. Lett. 76, 312–320

  • Burbidge, D., Cummins, P.R., Mleczko, R., and Thio, H.K. (2008), A probabilistic tsunami hazard assessment for Western Australia, Pure Appl. Geophys., 165, 2059–2088.

  • Calmant, S., Pelletier, B., Lebellegard, P., Bevis, M., Taylor, F.W., and Phillips, D.A. (2003), New insights on the tectonics along the New Hebrides subduction zone based on GPS results: J. Geophys. Res., 108(18), doi:10.1029/2001J1200644.

  • Cho, Y.-S. (1995), Numerical simulations of tsunami and runup. PhD thesis, Cornell University.

  • Cornell, C.A. (1968), Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58(5), 1583–1606.

  • de Lange, W.P., and T.R. Healy (2001), Tsunami hazard for the Auckland region and Hauraki Gulf, New Zealand, Natural Hazards, 24(3), 267–284, 2001.

  • Delteil, J., Ruellan, E., Wright, I., and Matsumoto, T. (2002), Structure and structural development of the Havre Trough (SW Pacific), J. Geophys. Res., 107(B8), doi:10.1029/2001J1200494.

  • Eisner, R. K. (2005), Planning for tsunami: reducing future losses through mitigation. Nat. Hazards 35, 155–162.

  • Geist, E.L. (2002). Complex earthquake rupture and local tsunami. J. Geophys. Res., 107, B5, doi:10.1029/2000JB000139

  • Geist, E. L., and T. Parsons (2006). Probabilistic analysis of tsunami hazards, Nat. Haz. 37, 277–314.

  • Goff, J.R., Pearce, S., Nichol, S.L., Chagué-Goff, C., Horrocks, M., and Strotz, L., (2010). Multiproxy records of regionally-sourced tsunamis, New Zealand. Geomorphology 118, 369–382.

  • Goff, J.R., Walters, R.A., and Callaghan, F., (2006). “Tsunami source study”. Environment Waikato Report TR 2006/49.

  • González, F.I., E.L. Geist, B. Jaffe, U. Kâno˘glu, H. Mofjeld, C.E. Synolakis, V.V. Titov, D. Arcas, D. Bellomo, D. Carlton, T. Horning, J. Johnson, J. Newman, T. Parsons, R. Peters, C. Peterson, G. Priest, A. Venturato, J. Weber, F. Wong, and A. Yalciner (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J. Geophys. Res. 114, C11023, doi:10.1029/2008JC005132.

  • Jonientz-Trisler, C., Simmons, R.S., Yanagi, B., Crawford, G., Darienzo, M., Eisner, R., Petty, E. and Priest, G., (2005), Planning for tsunami-resilient communities. Nat. Hazards 35, 121–139.

  • Lawver, L.A., Hawkins, J.W. and Sclater, J.G. (1976), Magnetic anomalies and crustal dilation in the Lau Basin, Earth Planet. Sci. Lett. 33, 27–35.

  • Liu, P.L.-F., Cho, Y.-S., Yoon, S.B. and Seo, S.N. (1994), Numerical simulations of the 1960 chilean tsunami propagation and inundation at hilo, hawaii. In Recent Development in Tsunami Research, pages 99–115. Kluwer Academic Publishers.

  • Liu, P.L.-F., Cho, Y-S., Briggs, M.J., Synolakis, C.E., and Kanoglu, U. (1995), Run-up of Solitary Waves on a Circular Island, J. Fluid Mechanics, 302, 259–285.

  • Liu, Y., Shi, Y., Yuen, D.A., Sevre, E.O.D., Yuan, X., and Xing, H.L. (2009) Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 4, 129–137.

  • McGuire, R. (2004), Seismic hazard and risk analysis, MNO-10 (Earthquake Engineering Research Institute, USA).

  • McCaffrey, R. (2008) Global frequency of magnitude 9 earthquakes. Geology 36, 263-266. doi:10.1130/852G24402A.1

  • Mori, N., Takahashi, T., Yasuda, T. andYanagisawa, H. (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett. 38, L00G14, doi:10.1029/2011GL049210

  • Okada, Y., (1985). Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am. 75, 1135-1154.

  • Parson, L.M. and Hawkins, J.W. (1994), Two-stage ridge propagation and the geological history of the Lau back-arc basin, Proc. Ocean Drill. Program Sci. Results 135, 819–828.

  • Pelletier, B., Calmant, S. and Pillet, R. (1998), Current tectonics of the Tonga-New Hebrides region: Earth and Planetary Sci. Letters 164, 263-276.

  • Power, W. L., Downes, G., and Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure Appl. Geophys. 164(2), 547–564.

  • Power, W.L., Wallace, L.M., Wang, X. and Reyners M. (2012). Tsunami hazard posed to New Zealand by the Kermadec and Southern New Hebrides subduction margins: an assessment based on plate boundary kinematics, Pure Appl. Geophys. 169, 1–36.

  • Rikitake, T. and Aida, I. (1988), Tsunami hazard probability in Japan, Bull. Seismol. Soc. Am. 78(3), 1268–1278.

  • Senior Seismic Hazard Analysis Committee (SSHAC), Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts (US Nuclear Regulatory Commission, NUREG/CR-6372, Washington, DC, 1997).

  • Sorensen, M., Spada, M., Babaeyko, A., Wiemer S., and Grunthal, G. (2012), Probabilistic tsunami hazard in the Mediterranean Sea, J. Geophys. Res. 117, B01305, 15 PP., 2012 doi:10.1029/2010JB008169

  • Satake, K. (1995), Linear and Nonlinear Computations of the 1992 Nicaragua Earthquake Tsunami, Pure Appl. Geophys. 144, 455–470.

  • Titov, V.V., Gonzalez, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005), Real-time tsunami forecasting: Challenges and solutions, Nature Hazards 35(1), 41–58.

  • Wallace, L., Beavan, J., McCaffrey R., and Darby, D. (2004). Subduction zone coupling and tectonic block rotation in the North Island, New Zealand, J. geophy. Res., 109, B12406, doi: 10.1029/2004JB003241.

  • Walters, R.A. (2005). A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. International Journal for Numerical Methods in Fluid 49, 721–737.

  • Walters, R.A., Goff, J.R., and Wang, K. (2006), Tsunamigenic sources in the Bay of Plenty, New Zealand, Sci. Tsu. Haz., 24, 339–357.

  • Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. PhD thesis, Cornell University, 2008.

  • Wang, X. and Liu, P.L.-F. (2006), An analysis of 2004 sumatra earthquake fault plane mechanisms and indian ocean tsunami. J. Hydraulic Res., 44(2):147–154.

  • Wang, X. and Liu, P.L.-F. (2007), Numerical simulations of the 2004 indian ocean tsunamis - coastal effects. Journal of Earthquake and Tsunami, 1(3):273–297.

  • Weissel, J.K. (1977), Evolution of the Lau Basin by the growth of small plates, in Island Arcs, Deep Sea Trenches, and Back-Arc Basins, Maurice Ewing Ser., vol. 1, edited by M. Talwani and W.C. Pitman III, pp. 429–436, AGU, Washington, D. C.

  • Wright, I.C. (1993), Pre-spreading rifting and heterogeneous volcanism in the southern Havre Trough back-arc basin, Mar. Geol., 113, 179–200.

  • Wright, I.C., Gamble, J.A., and Shane, P.A.R. (2003). Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific): Ivolcanology and eruptive mechanisms. Bulletin of Volcanology 65, 15–29.

Download references

Acknowledgments

This research was funded by the Auckland Regional Council, and benefited from research funded by the Earthquake Commission (EQC) and the New Zealand Natural Hazards Platform. We are grateful for helpful discussions with Laura Wallace, Martin Reyners, Mark Stirling and Graeme McVerry. We thank an anonymous reviewer for helpful suggestions that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Power.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, W., Wang, X., Lane, E. et al. A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline. Pure Appl. Geophys. 170, 1621–1634 (2013). https://doi.org/10.1007/s00024-012-0543-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0543-z

Keywords

Navigation