Skip to main content
Log in

Evolution of Strength and Permeability in Stressed Fractures with Fluid–Rock Interactions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We determine the evolution of frictional strength, strain weakening behavior and permeability in fractures subject to dissolution and precipitation. We establish these relations through slide–hold–slide experiments, with hold times from 10 to 3000 s, on split limestone core, under hydraulically open and closed conditions. Fracture friction and permeability are measured continuously throughout the experiments. The limestone displays velocity-strengthening behavior (stable slip) under incremented velocity steps of 1–6 μm/s. Frictional healing is observed to be time- and stress-dependent, showing higher gains in strength at both longer hold times and under lower effective stresses. Activation of healing is greater in wet samples than in dry samples. Flow-through experiments for flow rates in the range of 1–10 ml/min are conducted to further investigate the role of flow and mineral redistribution in contributing to healing. These experiments show strength gains are lower at higher flow rates where advective mineral dissolution and redistribution is enhanced and cementation concomitantly limited. Concurrently measured permeability decreases throughout the slide–hold–slide sequences indicating that mean fracture aperture reduces during sliding. We combine models representing pressure solution and stress corrosion as models for the growth in fracture contact area and represent the observed time-dependent behavior of strength gain and permeability evolution. The simulated results represent the observed strength gain at long hold times (~1000 s), but underestimate strengthening at short hold times. We conclude that the evolution of strength and permeability are significantly controlled by mechanisms of fluid–rock interactions and that the strengths and nature of feedbacks on these linkages are critical in understanding the mechanical and hydraulic behavior of faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkinson K. (1979), A fracture mechanics study of sub-critical tensile cracking of quartz in wet environments, Pure Appl. Phys., 117, 1011–1024.

  • Beeler, N. M., T. E. Tullis, and J. D. Weeks (1994), The roles of time and displacement in the evolution effect on rock friction, Geophys. Res. Lett., 21(18), 1987–1990, doi:10.1029/94GL01599.

  • Bos, B., C. J. Peach, and C. J. Spiers (2000), Slip behavior of simulated gouge-bearing faults under conditions favoring pressure solution, J. Geophys. Res., 105, 16,699–16,717.

  • Bos, B., and C. J. Spiers (2002), Fluid-assisted healing processes in gouge- bearing faults: Insights from experiments on a rock analogue system, Pure Appl. Geophys., 159, 2537–2566.

  • Carpenter, B. M., D. M. Saffer and C. Marone (2012), Frictional properties and sliding stability of the San Andreas fault from deep drill core, Geology, 40(8), 759–762; doi:10.1130/G33007.1.

  • Chester J.S., C. Lenz, F. M. Chester, and R. A. Lang (2004), Mechanisms of compaction of quartz sand at diagenetic conditions, Earth Planet Sci. Lett., 220(3), 435–451.

  • Collettini, C., A. Niemeijer, C. Viti, and C. Marone (2009a), Fault zone fabric and fault weakness, Nature, 462, 907–910, doi:10.1038/nature08585.

  • Collettini, C., C. Viti, S. A. F. Smith, and R. E. Holdsworth (2009b), The development of interconnected talc networks and weakening of continental low-angle normal faults, Geology, 37, 567–570, doi:10.1130/G25645A.1.

  • Cubillas, P., M. Prieto, S. Köhler, C. Chaïrat, and EH Oelkers (2005), Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem. Geol., 216 (1–2), 59–77. 10.1016/j.chemgeo.2004.11.009.

  • Dewers T., A. Hajash (1995), Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones, J. Geophys. Res., 100, 13093–13112.

  • Dieterich, J. H. (1972), Time-dependent friction in rocks, J. Geophys. Res., 77, 3690–3697.

  • Dieterich, J. H. (1979), Modeling of rock friction. 1. Experimental results and constitutive equations, J. Geophys. Res. 84, 161–162,–168.

  • Dieterich, J. H. (1981), Constitutive properties of faults with simulated gouge, Geophys. Monogr. 24, 103–120.

  • Dieterich, J. H., and B. D. Kilgore (1994), Direct observation of frictional contacts: New Insights for state-dependent properties, Pure Appl. Geophys., 143, 283–302, doi:10.1007/BF00874332.

  • Evans, J.P., F. M. Chester (1995), Fluid-rock interaction in faults of the San Andreas system: Inferences form San Gabriel fault rock geochemistry and microstructures, J. Geophys. Res., 100(B7), 13007–13020.

  • Giger, S. B., E. Tenthorey, S. F. Cox, and J. D. Fitz Gerald (2007), Permeability evolution in quartz fault gouges under hydrothermal conditions, J. Geophys. Res., 112, B07202, doi:10.1029/2006JB004828.

  • Goren, L., E. Aharonov, D. Sparks, R. Toussaint (2010), Pore pressure evolution in deforming granular material: A general formulation and the infinitely stiff approximation. J. Geophys. Res., 115(9), B09216.

  • Goren, L., E. Aharonov, D. Sparks, R. Toussaint (2011), The mechanical coupling of fluid-filled granular material under shear, Pure Appl. Geophys., 168(12), pp. 2289–2323.

  • Gratier, J-P., D. Dysthe, F. Renard (2013), The role of pressure solution creep in the ductility of the Earth’s upper crust. Adv. Geophys., 54, doi: 10.1016/B978-0-12-380940-7.00002-0.

  • Hickman, S. H., and B. Evans (1992), Growth of grain contacts in halite by solution transfer: Implications for diagenesis, lithification and strength recovery, in Fault Mechanics and Transport Properties of Rocks, pp. 253–260, Academic, London, doi:10.1016/S0074-6142(08)62825-9.

  • Hickman, S., R. Sibson, and R. Bruhn (1995), Introduction to special section: Mechanical involvement of fluids in faulting, J. Geophys. Res., 100, 12,831–12,840.

  • Hirose, T. and T. Shimamoto (2005), Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes, Bull. Seismol. Soc. Am., 95, 1666–1673.

  • Holdsworth, R. E. (2004), Weak faults—Rotten cores, Science, 303, 181–182, doi:10.1126/science.1092491.

  • Ikari, M. J., D. M. Saffer, and C. Marone (2007), Effect of hydration state on the frictional properties of montmorillonite-based fault gouge, J. Geophys. Res., 112, B06423, doi:10.1029/2006JB004748.

  • Ikari, M. J., D. M. Saffer, and C. Marone (2009), Frictional and hydrologic properties of clay-rich fault gouge, J. Geophys. Res., 114, B05409, doi:10.1029/2008JB006089.

  • Ikari, M. J., C. Marone, and D. M. Saffer (2011), On the relation between fault strength and frictional stability, Geology, 39, 83–86, doi:10.1130/G31416.1.

  • Inskeep, W. P., and P. R. Bloom (1985), An evaluation of rate-equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochi. Cosmochim. Acta, 49 (10), 2165–2180.

  • Johnson T. (1981), Time-dependent friction of granite: implications for precursory slip on faults, J. Geophys. Res. 86, 6017–6028.

  • Karner, S. L., C. Marone, and B. Evans (1997), Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions, Tectonophysics, 277, 41–55, doi:10.1016/S0040-1951(97)00077-2.

  • Li, Q., T. E. Tullis, D. Goldsby, and R. W. Carpwick (2011), Frictional ageing from interfacial bonding and the origins of rate and state friction, Nature, 480, 233–236, doi:10.1038/nature10589.

  • Mair, K., and C. J. Marone (1999), Friction of simulated fault gouge for a wide range of velocities and normal stresses, J. Geophys. Res., 104, 28899–28914.

  • Marone, C. J. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26(1), 643–696.

  • Marone, C. J. (2004), Earthquake science: faults greased at high speed, Nature, 427, 405–406.

  • Marone C., C. H. Scholz (1988), The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett. 15, 621–624.

  • McGuire, T.P. (2012), Permeability evolution of stressed fractures permeated by reactive fluids, The Pennsylvania State University, State College, US.

  • McGuire, T. P., D. Elsworth, Z. Karcz (2013), Experimental Measurements of Stress and Chemical Controls on the Evolution of Fracture Permeability, Trans. Porous Med., 98, 15–34 DOI 10.1007/s11242-013-0123-4.

  • Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2006), Moisture-related weakening and strengthening of a fault activated at seismic slip rates, Geophys. Res. Lett., 33, L16319, doi: 10.1029/2006GL026980.

  • Mizoguchi, K., M. Takahashi, K. Masuda, and E. Fukuyama (2007), Fault strength drop due to phase transitions in the pore fluid, Geophys. Res. Lett., 34, L09313, doi:10.1029/2007GL029345.

  • Moore, D. E., and D. A. Lockner (2007), Friction of thesmectite clay montmorillonite. The Seismogenic Zone of Subduction Thrust Faults, edited by T. Dixon and C. Moore, pp. 317–345, Columbia Univ. Press, New York.

  • Muhuri, S. K., T. A. Dewers, T. E. Scott Jr., and Z. Reches (2003), Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion?, Geology, 31, 881–884, doi:10.1130/G19601.1.

  • Nakashima, S. (1995), Diffusivity of ions in pore water as a quantitative basis for rock deformation rate estimates, Tectonophysics, 245, 185–203.

  • Nara Y., K. Kaneko (2005), Study of subcritical crack growth in andesite using the double torsion test, Int. J. Rock Mech. Min. Sci., 42: 521– 530.

  • Niemeijer, A., C. Marone, and D. Elsworth (2010a), Fabric induced weakness of tectonic faults, Geophysical Research Letters, 37, L03304, doi:10.1029/2009GL041689.

  • Niemeijer, A. R., and R. L. Vissers (2014), Earthquake rupture propagation inferred from the spatial distribution of fault rock frictional properties, Earth Planet. Sci. Lett., 396, 154–164.

  • Olsen, M. P., C. H. Scholz, and A. Le ger (1998), Healing and sealing of a simulated fault gouge under hydrothermal conditions: Implications for fault healing, J. Geophys. Res., 103, 7421–7430.

  • Rabinowicz, E. (1951), The nature of static and kinetic coefficients of friction, J. Appl. Phys., 22, 1373–1379, doi:10.1063/1.1699869.

  • Reches, Z., and D. A. Lockner (2010), Fault weakening and earthquake instability by powder lubrication, Nature, 467(7314), 452–455, doi:10.1038/nature09348.

  • Renard, F., J.-P. Gratier, and B. Jamtveit (2000), Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults, J. Struct. Geol., 22(10), 1395–1407.

  • Revil A. (1999), Pervasive pressure-solution transfer: A poro-visco-plastic model, Geophys. Res.Lett., 26(2), 255–258.

  • Robin F. (1978), Pressure solution at grain-to-grain contacts, Geochim.Cosmochim. Ac., 42: 1383–1389.

  • Saffer, D. M., and C. Marone (2003), Comparison of smectite- and illite-rich gouge frictional properties: Application to the up-did limit of the seismogenic zone along subduction mega-thrusts, Earth Planet. Sci. Lett., 215, 219–235, doi:10.1016/S0012-821X(03)00424-2.

  • Scholz, C. H. (1998), Earthquakes and friction laws. Nature, 391, 37–42.

  • Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511818516.

  • Tenthorey, E., S. F. Cox, and H. F. Todd (2003), Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones, Earth Planet. Sci. Lett., 206, 161–172.

  • Verberne, B. A., C. He, and C. J. Spiers (2010), Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone, Sichuan, China, Bull. Seismol. Soc. Am., 100(5B), 2767–2790.

  • Violay, M., S. Nielsen, E. Spagnuolo, D. Cinti, G. Di Toro, G. Di Stefano (2013), Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes, Earth Planet. Sci. Lett., 361, pp. 74–84.

  • Violay, M., S. B. Nielsen, B. Gibert, E. Spagnuolo, A. Cavallo, P. Azais, S. Vinciguerra, G. Di Toro (2014), Effect of water on the frictional behavior of cohesive rocks during earthquakes. Geology, 42(1), pp. 27–30.

  • Volery, C., E. Davaud, C. Durlet, B. Clavel, J. Charollais, and B. Caline (2010), Microporous and tight limestones in the Urgonian Formation (late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the formation of microporous facies, Sediment. Geol., 230(1), 21–34, doi:10.1016/j.sedgeo.2010.06.017.

  • Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg (1995), Fluid-rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021–13,032, doi:10.1029/94JB02622.

  • Yasuhara, H., C. Marone, and D. Elsworth (2005), Fault zone restrengthening and frictional healing: The role of pressure solution, J. Geophys. Res., 110, B06310, doi:10.1029/2004JB003327.

  • Yasuhara, H., and D. Elsworth (2008), Compaction of a fracture moderated by competing roles of stress corrosion and pressure solution, Pure Appl. Geophys., 165, 1289–1306, doi:10.1007/s00024-008-0356-2.

  • Yasuhara, H., D. Elsworth, and A. Polak (2003), A mechanistic model for compaction of granular aggregates moderated by pressure solution, J. Geophys. Res., 108(B11), 2530, doi:10.1029/2003JB002536.

  • Yasuhara, H., D. Elsworth, and A. Polak (2004), Evolution of permeability in a natural fracture: Significant role of pressure solution, J. Geophys. Res., 109(B3), B03204.

  • Yasuhara, H., D. Elsworth, A. Polak, J. Liu, A. Grader, and P. Halleck (2006), Spontaneous switching between permeability enhancement and degradation in fractures in carbonate: Lumped parameter representation of mechanically-and chemically-mediated dissolution, Transp. Porous Med., 65(3), 385–409.

  • Zhang, X., C. J. Spiers, and C. J. Peach (2010), Compaction creep of wet granular calcite by pressure solution at 28°C to 150°C, J. Geophys. Res., 115, B09217, doi:10.1029/2008JB005853.

Download references

Acknowledgments

This work was funded by the special fund of the national ‘985’ project of Zhejiang University. The authors thank Steven L. Swavely and Hemant Kumar for their assistance in the laboratory experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Elsworth, D. & Hu, Y. Evolution of Strength and Permeability in Stressed Fractures with Fluid–Rock Interactions. Pure Appl. Geophys. 173, 525–536 (2016). https://doi.org/10.1007/s00024-015-1099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1099-5

Keywords

Navigation