Skip to main content
Log in

Probabilistic Tsunami Hazard Assessment from Incomplete and Uncertain Historical Catalogues with Application to Tsunamigenic Regions in the Pacific Ocean

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The paper presents a new method for empirical assessment of tsunami recurrence parameters, namely the mean tsunami activity rate \(\lambda_{\text{T}}\), the Soloviev–Imamura frequency–magnitude power law \(b_{\text{T}}\)-value, and the coastline-characteristic, maximum possible tsunami intensity \(i_{ \text{max} }\). The three coastline-characteristic recurrence parameters are estimated locally by maximum likelihood techniques using only tsunami event catalogues. The method provides for incompleteness of the tsunami catalogue, uncertainty in the tsunami intensity determination, and uncertainty associated with the parameters in the applied tsunami occurrence models. Aleatory and epistemic uncertainty is introduced in the tsunami models by means of the use of mixture distributions. Both the mean tsunami activity rate \(\lambda_{\text{T}}\) of the Poisson occurrence model, and the \(b_{\text{T}}\)-value of the Soloviev–Imamura frequency–intensity power law are random variables. The proposed procedure was applied to estimate the probabilities of exceedance and return periods for tsunamis in the tsunamigenic regions of Japan, Kuril–Kamchatka, and South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Modified after Kijko and Sellevoll (1992)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions (9th ed.). New York: Dover.

    Google Scholar 

  • Ambraseys, N. (1962). Data for the investigation of the seismic sea-waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America, 52, 895–913.

    Google Scholar 

  • Anita, G., Tonini, R., Sandri, L., Pierdominici, S., & Selva, J. (2015). A Methodology for a comprehensive probabilistic tsunami hazard assessment: Multiple sources and short-term interactions. Journal of Marine Science and Engineering, 3(1), 23–51. doi:10.3390/jmse3010023.

    Article  Google Scholar 

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure and Applied Geophysics, 164, 577–592.

    Article  Google Scholar 

  • Benjamin, J. R. (1968). Probabilistic models for seismic forces design. Journal of the Structural Division ASCE, 94(ST5), 1175–1196.

    Google Scholar 

  • Benjamin, J. R., & Cornell, C. A. (1970). Probability, statistics and decision for civil engineers. New York: McGraw-Hill.

    Google Scholar 

  • Bird, P., & Kagan, Y. Y. (2004). Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bulletin of the Seismological Society of America, 94(6), 2380–2399.

    Article  Google Scholar 

  • Brizuela, B., Armigliato, A., & Tinti, S. (2014). Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru. Natural Hazards and Earth System Sciences, 14(7), 1889–1903.

    Article  Google Scholar 

  • Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. K. (2008). A probabilistic tsunami hazard assessment for Western Australia. Pure and Applied Geophysics, 165(11-12), 2059–2088.

    Article  Google Scholar 

  • Burroughs, S. M., & Tebbens, S. F. (2001). Upper-truncated power laws in natural systems. Pure and Applied Geophysics, 158, 741–757.

    Article  Google Scholar 

  • Burroughs, S. M., & Tebbens, S. F. (2005). Power law scaling and probabilistic forecasting of tsunami run-up heights. Pure and Applied Geophysics, 162, 331–342.

    Article  Google Scholar 

  • Campbell, K. W. (1982). Bayesian analysis of extreme earthquake occurrences. Part I. Probabilistic hazard model. Bulletin of the Seismological Society of America, 72, 1689–1705.

    Google Scholar 

  • Campbell, K. W. (1983). Bayesian analysis of extreme earthquake occurrences. Part II. Application to the San Jacinto Fault zone of southern California. Bulletin of the Seismological Society of America, 73, 1099–1115.

    Google Scholar 

  • Cao, A., & Gao, S. S. (2002). Temporal variation of seismic b-values beneath northeastern Japan island arc. Geophysical Research Letters, 29(9), 48-1–48-3.

    Article  Google Scholar 

  • Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66(2), 367–374. doi:10.1093/biomet/66.2.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • Cosentino, P., Ficara, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in the earthquake statistics. Bulletin of the Seismological Society of America, 67(6), 1615–1623.

    Google Scholar 

  • Cramér, H. (1961). Mathematical methods of statistics. Princeton: Princeton University Press.

    Google Scholar 

  • Davison, A. C. (2003). Statistical models, Cambridge. Series in statistical and probabilistic mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Downes, G. L., & Stirling, M. W. (2001). Groundwork for development of a probabilistic tsunami hazard model for New Zealand. In International tsunami symposium 2001, Seattle, Washington, pp. 293–301.

  • Dzierma, Y., & Wehrmann, H. (2010). Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. Journal of Volcanology and Geothermal Research, 193(1), 82–92.

    Article  Google Scholar 

  • Eadie, W. T., Drijard, D., James, F. E., Roos, M., & Sadoulet, B. (1971). Statistical methods in experimental physics. Second reprint 1982. North-Holland, Amsterdam.

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1368.

    Google Scholar 

  • Geist, E. L. (2005). Local tsunami hazards in the Pacific Northwest from Cascadia subduction zone earthquakes. U.S. Geological Survey Professional Paper 1661-B.

  • Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37, 277–314.

    Article  Google Scholar 

  • González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research: Oceans, 114(C11), 1978–2012. doi:10.1029/2008JC005132.

    Article  Google Scholar 

  • Grezio, A., Marzocchi, W., Sandri, L., & Gasparini, P. (2010). A Bayesian procedure for probabilistic tsunami hazard assessment. Natural Hazards, 53, 159–174.

    Article  Google Scholar 

  • Grezio, A., Sandri, L., Marzocchi, W., Argnani, A., & Gasparini, P. (2012). Probabilistic tsunami hazard assessment for Messina Strait area (Sicily-Italy). Natural Hazards, 64, 329–358.

    Article  Google Scholar 

  • Grilli, S. T., Harris, J., & Tajalli Bakhsh, T. (2011) Literature Review of tsunami sources affecting tsunami hazard along the US East Coast, NTHMP Progress report, Research Reports CACR-11-08, p. 60 Center for Applied Coastal Research, University of Delaware, Newark, 2011.

  • Gusiakov, V. K. (2001). Basic Pacific tsunami catalogs and database, 47 BC–2000 AD: Results of the first stage of the project. In Proceedings of the international tsunami symposium, August 7–9, 2001, Seattle, USA, PMEL/NOAA, pp. 263–272.

  • Gusiakov, V. K. (2005). Tsunami generation potential of different tsunamigenic regions in the Pacific. Marine Geology, 215(1), 3–9.

    Article  Google Scholar 

  • Gusiakov, V. K. (2009). Tsunami history: Recorded. In E. N. Bernard & A. R. Robinson (Eds.), The sea (pp. 1–15). Boston: Harvard University Press.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America, 32, 163–191.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration: (Second paper). Bulletin of the Seismological Society of America, 46, 105–145.

    Google Scholar 

  • Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., et al. (2012). Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios. Continental Shelf Research, 38, 1–23.

    Article  Google Scholar 

  • Hébert, H., Schindelé, F., Altinok, Y., Alpar, B., & Gazioglu, C. (2005). Tsunami hazard in the Marmara Sea (Turkey): A numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Marine Geology, 215, 23–43. doi:10.1016/j.margeo.2004.11.006.

    Article  Google Scholar 

  • Horikawa, K., & Shuto, N. (1983). Tsunami disasters and protection measures in Japan. In K. Iida & T. Iwasaki (Eds.), Tsunamis—their science and engineering (pp. 9–22). Tokyo: Terra Scientific Publishing Company.

    Google Scholar 

  • Houston, J. R., Carver, R. D., & Markle, D. G. (1977). Tsunami-wave elevation frequency of occurrence for the Hawaiian Islands. Technical Report H-77-16, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

  • Jones, G., Chester, D. K., & Shooshtarian, F. (1999). Statistical analysis of the frequency of eruptions at Furnas Volcano, Sao Miguel, Azores. Journal of Volcanology and Geothermal Research, 92(1), 31–38.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991). Seismic moment distribution. Geophysical Journal International, 106(1), 123–134.

    Article  Google Scholar 

  • Kagan, Y. Y. (1997). Seismic moment-frequency relation for shallow earthquakes: Regional comparison. Journal of Geophysical Research: Solid Earth, 102(B2), 2835–2852.

    Article  Google Scholar 

  • Kagan, Y. Y. (2002a). Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148(3), 520–541.

    Article  Google Scholar 

  • Kagan, Y. Y. (2002b). Seismic moment distribution revisited: II. Moment conservation principle. Geophysical Journal International, 149(3), 731–754.

    Article  Google Scholar 

  • Kagan, Y. Y. (2010). Statistical distributions of earthquake numbers: Consequence of branching process. Geophysical Journal International, 180(3), 1313–1328.

    Article  Google Scholar 

  • Kagan, Y. Y., & Schoenberg, F. (2001). Estimation of the upper cutoff parameter for the tapered Pareto distribution. Journal of Applied Probability, 38(A), 158–175.

    Article  Google Scholar 

  • Karakaisis, G. F., Papazachos, C. B., Scordilis, E. M., Papaioannou, Ch. A., & Papazachos, B. C. (2002). Time variation of seismicity and seismic hazard in Hellenic Arc trench system. In XXXVIII General Assembly of ESC, 1–6 September 2002, Genoa, Italy, pp. 1–6.

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude mmax. Pure and Applied Geophysics, 161, 1–27.

    Article  Google Scholar 

  • Kijko, A. (2012). On Bayesian procedure for maximum earthquake magnitude estimation. Research in Geophysics 2(Number 1), 46–51. http://www.pagepress.org/journals/index.php/rg. Research in Geophysics [eISSN 2038-9663] is a new Open Access, online-only, peer-reviewed journal published by PAGEPress, Pavia, Italy.

  • Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files, Part II, incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82, 120–134.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59, 674–700.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2017). Estimation of the frequency-magnitude Gutenberg-Richter b-value without making assumptions on the level of completeness. Seismological Research Letters, 88, 1–8. doi:10.1785/0220160177. (Online publication 25 January 2017).

    Article  Google Scholar 

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106(3), 1210–1222. doi:10.1785/0120150252.

    Article  Google Scholar 

  • Koravos, G. C., Yadav, R. B. S., & Tsapanos, T. M. (2015). Evaluation of tsunami potential based on conditional probability for specific zones of the Pacific tsunamigenic rim. Tectonophysics, 658, 159–168.

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. Delhi: Pearson Education. http://www.pearsoned.co.in/web/books/9788131707180_Geotechnical-Earthquake-Engineering_Steven-L-Kramer.aspx.

  • Lin, I.-C., & Tung, C. C. (1982). A preliminary investigation of tsunami hazard. Bulletin of the Seismological Society of America, 72, 2323–2337.

    Google Scholar 

  • Liu, Y., Santos, A., Wang, S. M., Shi, Y., Liu, H., & Yuen, D. A. (2007). Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Physics of the Earth and Planetary Interiors, 163, 233–244.

    Article  Google Scholar 

  • Lockridge, P. A., & Smith, R. H. (1984). Tsunamis in the Pacific Basin, 1900–1983 (map). Boulder: NOAA/NGDC.

    Google Scholar 

  • Lomnitz, C. (1973). Poisson processes in earthquake studies. Bulletin of the Seismological Society of America, 63, 735–758.

    Google Scholar 

  • Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., & Valensise, G. (2008). Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. Journal of Geophysical Research, 113(B01301), 1–14. doi:10.1029/2007JB004943.

    Google Scholar 

  • Main, I. (1996). Statistical physics, seismogenesis, and seismic hazard. Reviews of Geophysics, 34(4), 433–462.

    Article  Google Scholar 

  • McGuire, R. K. (1976). Fortran computer program for seismic risk analysis. USGS. Open File Report. 76–67.

  • Mora, P. R. (2001). Pageoph topical volumes microscopic and macroscopic simulation: Towards predictive modelling of the Earthquake process.

  • Mulargia, F., & Tinti, S. (1985). Seismic sample areas defined from incomplete catalogs: An application to the Italian territory. Physics of the Earth and Planetary Interiors, 40(4), 273–300.

    Article  Google Scholar 

  • Ogata, Y., & Abe, K. (1991). Some statistical features of the long-term variation of the global and regional seismic activity. International Statistical Review, 59, 139–161.

    Article  Google Scholar 

  • Orfanogiannaki, K., & Papadopoulos, G. A. (2007). Conditional probability approach of the assessment of tsunami potential: Application in three tsunamigenic regions of the Pacific Ocean. Pure and Applied Geophysics, 164(2–3), 593–603.

    Article  Google Scholar 

  • Page, R. (1968). Aftershocks and microaftershocks. Bulletin of the Seismological Society of America, 58, 1131–1168.

    Google Scholar 

  • Papadopoulos, G. A., & Imamura, F. (2001). A proposal for a new tsunami intensity scale. In Proceedings of the International Tsunami Symposium (pp. 569–577).

  • Paulatto, M., Pinat, T., & Romanelli, F. (2007). Tsunami hazard scenarios in the Adriatic Sea domain. Natural Hazards and Earth Systems Sciences, 7, 309–325. doi:10.5194/nhess-7-309-2007.

    Article  Google Scholar 

  • Petersen, M. D., Cramer, C. H., & Frankel, A. D. (2002). Simulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zone. In Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I (pp. 2147–2168). Basel: Birkhäuser.

  • Pisarenko, V. F., & Sornette, D. (2003). Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics, 160(12), 2343–2364.

    Article  Google Scholar 

  • Pisarenko, V. F., Sornette, A., Sornette, D., & Rodkin, M. V. (2008). New approach to the characterization of M max and of the tail of the distribution of earthquake magnitudes. Pure and Applied Geophysics, 165(5), 847–888.

    Article  Google Scholar 

  • Pisarenko, V. F., Sornette, A., Sornette, D., & Rodkin, M. V. (2014). Characterization of the tail of the distribution of earthquake magnitudes by combining the GEV and GPD descriptions of extreme value theory. Pure and Applied Geophysics, 171(8), 1599–1624.

    Article  Google Scholar 

  • Power, W., Downes, G., & Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure and Applied Geophysics, 164, 547–564. doi:10.1007/s00024-006-0166-3.

    Article  Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and its application (2nd ed., p. 625). New York: Willey.

    Book  Google Scholar 

  • Rikitake, T., & Aida, I. (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 78, 1268–1278.

    Google Scholar 

  • Shaw, B., Ambraseys, N. N., England, P. C., Floyd, M. A., Gorman, G. J., Higham, T. F. G., et al. (2008). Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geoscience, 1, 268–276. doi:10.1038/ngeo151.

    Article  Google Scholar 

  • Sieberg, A. (1927). Geologische, physikalische und angewandte Erdbebenkund. Jena: Verslag von Gustav Fisher.

    Google Scholar 

  • Soloviev, S. L. (1970). Recurrence of tsunamis in the Pacific. In W. M. Adams (Ed.), Tsunamis in the Pacific Ocean (pp. 149–163). Honolulu: East-West Centre Press.

    Google Scholar 

  • Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research, 117(B01305), 1–15. doi:10.1029/2010JB008169.

    Google Scholar 

  • Sornette, D., & Sornette, A. (1999). General theory of the modified Gutenberg–Richter law for large seismic moments. Bulletin of the Seismological Society of America, 89(4), 1121–1130.

    Google Scholar 

  • Talbi, A., & Yamazaki, F. (2009). A mixed model for earthquake inter-event times. Journal of Seismology, 10, 289–307.

    Google Scholar 

  • Tatsumi, D., Calder, C. A., & Tomita, T. (2014). Bayesian near-field tsunami forecasting with uncertainty estimates. Journal of Geophysical Research: Oceans, 119, 2201–2211.

    Google Scholar 

  • Thio, H. K., Somerville, P., & Ichinose, G. (2007). Probabilistic analysis of strong ground motion and tsunami hazard in Southeast Asia. Journal of Earthquake and Tsunami, 1(2), 119–137. doi:10.1142/S1793431107000080.

    Article  Google Scholar 

  • Tinti, S. (1993). Evaluation of tsunami hazard in Calabria and eastern Sicily, Italy, Tsunamis in the world. In S. Tinti (Ed.), Advances in natural and technological hazards research (pp. 141–157). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tinti, S., & Armigliato, A. (2003). The use of scenarios to evaluate tsunami impact in southern Italy. Marine Geology, 199, 221–243. doi:10.1016/S0025-3227(03)00192-0.

    Article  Google Scholar 

  • Tinti, S., Armigliato, A., Tonini, R., Maramai, A., & Graziani, L. (2005). Assessing the hazard related to tsunamis of tectonic origin: A hybrid statistical-deterministic method applied to southern Italy coasts. Indian Society of Earthquake Technology Journal of Earthquake Technology, 42, 189–201.

    Google Scholar 

  • Tinti, S., & Maramai, A. (1996). Catalogue of tsunamis generated in Italy and in Cote d’ Azur, France: A step towards a unified catalogue of tsunamis in Europe. Annali di Geofisica, 39, 1253–1299.

    Google Scholar 

  • Tinti, S., Maramai, A., & Graziani, L. (2001). A new version of the European tsunami catalogue: Updating and revision. Natural Hazards and Earth System Science, 1, 255–262.

    Article  Google Scholar 

  • Tinti, S., & Mulargia, F. (1985). Effects of magnitude uncertainties in the Gutenberg–Richter frequency-magnitude law. Bulletin of the Seismological Society of America, 75, 1681–1697.

    Google Scholar 

  • Tonini, R., Armigliato, A., Pagnoni, G., Zaniboni, F., & Tinti, S. (2011). Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA). Natural Hazards and Earth System Sciences, 11(5), 1217–1232.

    Article  Google Scholar 

  • Urlaub, M., Talling, P. J., & Masson, D. G. (2013). Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, 63–82.

    Article  Google Scholar 

  • Vere-Jones, D., Robinson, R., & Yang, W. (2001). Remarks on the accelerated moment release model: Problems of model formulation, simulation and estimation. Geophysical Journal International, 144(3), 517–531.

    Article  Google Scholar 

  • Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106, 11201–11215.

    Article  Google Scholar 

  • Ward, S. N. (2003). Tsunamis. In R. A. Meyers (Ed.), The encyclopedia of physical science and technology (pp. 175–191). New York: Academic Press. doi: 10.1016/B0-12-227410-5/00793-6.

    Google Scholar 

  • Ward, S. N., & Asphaug, E. (2000). Asteroid impact tsunami: A probabilistic hazard assessment. Icarus, 145, 64–78.

    Article  Google Scholar 

  • Wijetunge, J. J. (2014). A deterministic analysis of tsunami hazard and risk for the southwest coast of Sri Lanka. Continental Shelf Research, 79, 23–35.

    Article  Google Scholar 

  • Yadav, R. B. S., Tsapanos, T. M., Tripathi, J. N., & Chopra, S. (2013). An evaluation of tsunami hazard using Bayesian approach in the Indian Ocean. Tectonophysics, 593, 172–182.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank V. K. Gusiakov of the Novosibirsk Tsunami Laboratory of the Institute of Computational Mathematics and Mathematical Geophysics (NTL/ICMMG) SDRAS, Novosibirsk, Russia, for the tsunami catalogue used in this paper, I. Fabris-Rotelli and P.J van Staden from the Department of Statistics at the University of Pretoria for their valuable contributions when preparing the manuscript as well as the two anonymous reviewers and Editor in chief for their insightful and helpful feedback. This work is based on research supported wholly or in part by the National Research Foundation of South Africa (Grant Numbers 76906 and 94808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansie Smit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smit, A., Kijko, A. & Stein, A. Probabilistic Tsunami Hazard Assessment from Incomplete and Uncertain Historical Catalogues with Application to Tsunamigenic Regions in the Pacific Ocean. Pure Appl. Geophys. 174, 3065–3081 (2017). https://doi.org/10.1007/s00024-017-1564-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1564-4

Keywords

Navigation