Skip to main content
Log in

Thermodynamics and Microphysics Relation During CAIPEEX-I

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Influence of the environmental thermodynamics on the microphysics of deep cumulus clouds over different parts of India is studied using in situ airborne observations from the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) during 2009. This study provides an understanding of the thermodynamics–microphysics relation over the Indian summer-monsoon region. Relatively stronger updraft and turbulence are noted in the pre-monsoon cloud base layers compared to that of the monsoon clouds. It is illustrated from the in situ observations as well as from a microphysical parcel model that the vertical variation of cloud droplet number concentration (CDNC) has a well-defined peak at a certain height above the cloud base. This elevated CDNC peak is found to be connected with the cloud parcel buoyancy and cumulative convective available potential energy (cCAPE). Higher parcel buoyancy above the cloud base of dry pre-monsoon clouds is associated with stronger in-cloud updraft velocity, higher supersaturation and higher droplet number concentration (in addition to aerosol effect). Higher adiabatic fraction and lower entrainment rate are observed in polluted clouds where boundary layer moisture is low, compared to clean clouds. Relative dispersion of droplet size distribution is found to vary concurrently with air mass characteristics and aerosol number concentration observed over different locations during the experiment. Aerosol–precipitation relationships are also investigated from the observation. Maximum reflectivity and rain rates showed a direct link with boundary layer water vapor content rather than with subcloud aerosol number concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ackerman, A. S., Kirkpatrick, K. P., Stevens, D. E., & Toon, O. B. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017. https://doi.org/10.1038/nature03174.

    Article  Google Scholar 

  • Albrecht, B. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230. https://doi.org/10.1126/science.245.4923.1227.

    Article  Google Scholar 

  • Andrea, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., et al. (2004). Smoking rain clouds over Amazon. Science, 303, 1337–1342.

    Article  Google Scholar 

  • Bera, S., Pandithurai, G., & Prabha, T. V. (2016a). Entrainment and droplet spectral characteristics in convective clouds during transition to monsoon. Atmospheric Science Letters, 17, 286–293. https://doi.org/10.1002/asl.657.

    Article  Google Scholar 

  • Bera, S., Prabha, T. V., & Grabowski, W. W. (2016b). Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. Journal of Geophysical Research: Atmospheres, 121, 9767–9788. https://doi.org/10.1002/2016jd025133.

    Google Scholar 

  • Blyth, A., Cooper, W. A., & Jensen, J. B. (1988). A study of the source of entrained air in Montana cumuli. Journal of Atmospheric Science, 45, 3944–3964. https://doi.org/10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    Article  Google Scholar 

  • Böing, S. J., Jonker, H. J. J., Nawara, W. A., & Siebesma, A. P. (2014). On the deceiving aspects of mixing diagrams of deep cumulus convection. Journal of the Atmospheric Sciences, 71, 56–68.

    Article  Google Scholar 

  • Derksen, J. W. B., Roelofs, G.-J. H., & Rockmann, T. (2009). Influence of entrainment of CCN on microphysical properties of warm cumulus. Atmospheric Chemistry and Physics, 9, 6005–6015.

    Article  Google Scholar 

  • Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359(6374), 411–418. https://doi.org/10.1126/science.aan8461.

    Article  Google Scholar 

  • Gayatri, K., Patade, S., & Prabha, T. V. (2017). Aerosol–Cloud interaction in deep convective clouds over the Indian Peninsula using spectral (bin) microphysics. Journal of Atmospheric Sciences, 74, 3145–3166. https://doi.org/10.1175/jas-d-17-0034.1.

    Article  Google Scholar 

  • Gerber, H., Frick, G., Jensen, J., & Hudson, J. (2008). Entrainment, mixing, and microphysics in trade-wind cumulus. Journal of the Meteorological Society of Japan, 86A, 87–106.

    Article  Google Scholar 

  • Jensen, J. B., Austin, P. H., Baker, M. B., & Blyth, A. M. (1985). Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. Journal of the Atmospheric Sciences, 42, 173–192.

    Article  Google Scholar 

  • Jensen, J. B., & Baker, M. B. (1989). A simple model of droplet spectral evolution during turbulent mixing. Journal of the Atmospheric Sciences, 46, 2812–2829.

    Article  Google Scholar 

  • Khain, A. P. (2009). Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environmental Research Letters, 4, 015004. https://doi.org/10.1088/1748-9326/4/1/015004.

    Article  Google Scholar 

  • Khain, A. P., Roseenfeld, D., & Pokrovsky, A. (2005). Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of the Royal Meteorological Society, 131, 2639–2663. https://doi.org/10.1256/qj.04.62.

    Article  Google Scholar 

  • Konwar, M., Maheskumar, R. S., Kulkarni, J. R., Freud, E., Goswami, B. N., & Rosenfeld, D. (2012). Aerosol control on depth of warm rain in convective clouds. Journal of Geophysical Research: Atmospheres, 117, D13204. https://doi.org/10.1029/2012jd017585.

    Article  Google Scholar 

  • Konwar, M., Panicker, A. S., Axisa, D., & Prabha, T. V. (2015). Near-cloud aerosols in monsoon environment and its impact on radiative forcing. Journal of Geophysical Research, 120, 1445–1457.

    Google Scholar 

  • Kucieńska, B., Montero-Martínez, G., & García-García, F. (2010). A simulation of the influence of organic and inorganic pollutants on the formation and development of warm clouds over Mexico City. Atmospheric Research, 95, 487–495.

    Article  Google Scholar 

  • Kulkarni, J. R., Maheshkumar, R. S., Morwal, S. B., Padma kumara, B., Konwar, M., Deshpade, C. G., et al. (2012). Cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX): overview and preliminary results. Current Science, 102, 413–425.

    Google Scholar 

  • Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., & Ding, Y. (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 4, 888–894.

    Article  Google Scholar 

  • Lu, M. L., Feingold, G., Jonsson, H. H., Chuang, P. Y., Gates, H., Flagan, R. C., et al. (2008). Aerosol–cloud relationship in continental shallow clouds. Journal of Geophysical Research: Atmospheres, 113, D15201. https://doi.org/10.1029/2007JD009354.

    Article  Google Scholar 

  • Lu, C., Liu, Y., Yum, S. S., Niu, S., & Endo, S. (2012). A new approach for estimating entrainment rate in cumulus clouds. Geophysical Research Letters, 39, L04802.

    Google Scholar 

  • Mechem, D. B., Yuter, S. E., & de Szoeke, S. P. (2012). Thermo-dynamic and aerosol controls in southeast Pacific stratocumulus. Journal of Atmospheric Science, 69, 1250–1266. https://doi.org/10.1175/jas-d-11-0165.1.

    Article  Google Scholar 

  • Miles, N. L., Verlinde, J., & Clothiaux, E. E. (2000). Cloud droplet size distributions in lowlevel stratiform clouds. Journal of Atmospheric Science, 57, 295–311.

    Article  Google Scholar 

  • Morrison, H., & Grabowski, W. W. (2007). Comparison of bulk and binwarm-rain microphysics models using a kinematic framework. Journal of the Atmospheric Sciences, 64, 2839–2861.

    Article  Google Scholar 

  • Murugavel, P., Malap, N., Balaji, B., Mehajan, R. K., & Prabha, T. V. (2017). Precipitable water as a predictor of LCL height. Theoretical and Applied Climatology, 130, 467.

    Article  Google Scholar 

  • Nair, S., Sanjay, J., Pandithurai, G., Maheskumar, R. S., & Kulkarni, J. R. (2012). On the parameterization of cloud droplet effective radius using CAIPEEX aircraft observations for warm clouds in India. Atmospheric Research, 108, 104–114. https://doi.org/10.1016/j.atmosres.2012.02.002.

    Article  Google Scholar 

  • Paluch, I. R. (1979). The entrainment mechanism in Colorado cumuli. Journal of Atmospheric Science, 36, 2467–2478.

    Article  Google Scholar 

  • Pandithurai, G., Dipu, S., Prabha, T. V., Maheshkumar, R. S., Kulkarni, J. R., & Goswami, B. N. (2012). Aerosol effect on droplet spectral dispersion in warm continental cumuli. Journal of Geophysical Research: Atmospheres, 117(1–15), D16202. https://doi.org/10.1029/2011jd016532.

    Google Scholar 

  • Patade, S., Prabha, T. V., Axisa, D., Gayatri, K., & Heymsfield, A. (2015). Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX. Journal of Geophysical Research: Atmospheres, 120, 10418–10440.

    Google Scholar 

  • Patade, S., Shete, S., Malap, N., Kulkarni, G., & Prabha, T. V. (2016). Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX. Atmospheric Research, 169, 32–45.

    Article  Google Scholar 

  • Prabha, T. V., Khain, A., Maheshkumar, R. S., Pandithurai, G., Kulkarni, J. R., Konwar, M., et al. (2011). Microphysics of pre-monsoon and monsoon clouds as seen from in situ measurements during CAIPEEX. Journal of Atmospheric Science, 68, 1882–1901.

    Article  Google Scholar 

  • Prabha, T. V., Patade, S., Pandithurai, G., Khain, A., Axisa, D., Pradeep-Kumar, P., et al. (2012). Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. Journal of Geophysical Research, 117, D20205. https://doi.org/10.1029/2011jd016837.

    Article  Google Scholar 

  • Raga, G. R., Jensen, J. B., & Baker, M. B. (1990). Characteristics of cumulus band clouds off the coast of Hawaii. Journal of Atmospheric Science, 47, 338–356.

    Article  Google Scholar 

  • Rangno, A. L., & Hobbs, P. V. (2005). Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quarterly Journal of the Royal Meteorological Society, 131, 639–673.

    Article  Google Scholar 

  • Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., et al. (2008). Flood or drought: How do aerosols affect precipitation? Science, 321(5894), 1309–1313.

    Article  Google Scholar 

  • Siebesma, A. P., et al. (2003). A large-eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60, 1202–1219.

    Article  Google Scholar 

  • Thomas, L., Malap, N., Grabowski, W. W., Dani, K., & Prabhakran, T. V. (2018). Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: the impact of surface forcing. Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acp-2018-1.

    Google Scholar 

  • Tölle, M. H., & Krueger, S. K. (2014). Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds. Journal of Advances in Modeling Earth Systems, 6, 281–299. https://doi.org/10.1002/2012ms000209.

    Article  Google Scholar 

  • Twomey, S. (1977). The influence of the pollution in the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34, 1149–1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    Article  Google Scholar 

  • Wang, S., Wang, Q., & Feingold, G. (2003). Turbulence, condensation, and liquid water transport in numerically simulated non-precipitating stratocumulus clouds. Journal of the Atmospheric Sciences, 60, 262–278. https://doi.org/10.1175/1520-0469(2003)060<0262:tcalwt>2.0.co;2.

    Article  Google Scholar 

  • Warner, J. (1969). The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. Journal of the Atmospheric Sciences, 26, 1049–1059.

    Article  Google Scholar 

  • Warren, S. G., Hahn, C. J., London, J., Chervine, R. M., & Jenne, R. L. (1986). Global distribution of total cloud cover and cloud type amounts over land. NCAR Tech. Note NCAR/TN-273 + STR, 29 pp.

  • Xue, H., & Feingold, G. (2006). Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. Journal of the Atmospheric Sciences, 63, 1605–1622. https://doi.org/10.1175/jas3706.1.

    Article  Google Scholar 

Download references

Acknowledgements

The CAIPEEX project and IITM are fully funded by Ministry of Earth Sciences, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarsan Bera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Prabha, T.V., Malap, N. et al. Thermodynamics and Microphysics Relation During CAIPEEX-I. Pure Appl. Geophys. 176, 371–388 (2019). https://doi.org/10.1007/s00024-018-1942-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1942-6

Keywords

Navigation