Skip to main content
Log in

An Experimental Investigation on the Tribological Behaviour of Nominally Flat Quartz Grains with Gouge Material in Dry, Partial Saturated and Submersed Conditions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We examined the normal and tangential contact behaviour of gouge materials between nominally flat quartz grains using micromechanical experiments. Primary mixtures of plastic clay (montmorillonite) and non-plastic silt (crushed aggregates) were used as gouges to focus the investigation on the tribological behaviour of gouge materials at dry, partial saturation and submersion conditions. The presence of gouges resulted in a decreased normal stiffness and frictional strength compared to pure quartz surfaces, and complex crushing behaviour. From cyclic shearing tests, montmorillonite showed the lowest secant stiffness and maximum energy losses, which were more pronounced at lower normal loads. Montmorillonite in its plastic and semi-solid states indicated that variation of post-peak softening and friction coefficient depend on the normal load at a given partial saturation level. In the sudden submersion simulation tests, both before and after the start of shearing, montmorillonite showed a significant decrease in the coefficient of friction (compared to dry gouge), unlike non-plastic silt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Sq :

Root mean square deviation of the heights

HM:

Marten’s hardness

FN and FT :

Normal and tangential load

δN and δT :

Normal and tangential displacement

FN,max :

Maximum normal load

KN and KT :

Normal and tangential stiffness

KN,max :

Maximum normal stiffness

KN,E :

Elastic normal stiffness (unloading)

FT,SS :

Tangential load at steady-state

KT,0.2 :

Tangential stiffness at 0.2 µm of tangential displacement

µ:

Coefficient of friction

µpeak :

Coefficient of friction at peak tangential load

µss :

Coefficient of friction at steady-state tangential load

PURE:

Bounding surfaces without microparticles (gouge)

DMON:

Bounding surfaces with dry montmorillonite

DNPS:

Bounding surfaces with dry non-plastic silt

WMON:

Bounding surface with wet montmorillonite

WMON-L:

Bounding surfaces with lower saturation of montmorillonite

WMON-M:

Bounding surfaces with medium saturation of montmorillonite

WMON-H:

Bounding surfaces with higher saturation of montmorillonite

References

  • Anthony, J. L., & Marone, C. (2005). Influence of particle characteristics on granular friction. Journal of Geophysical Research,110, B08409. https://doi.org/10.1029/2004JB003399.

    Article  Google Scholar 

  • Barreto, D., & O’Sullivan, C. (2012). The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions. Granular Matter,14, 505–521.

    Google Scholar 

  • Barton, R. R. (1972). A study of the angle of interparticle friction of sands with respect to its influence on the mass strength, M.Sc. thesis. The Victoria University of Manchester, Manchester, U.K.

  • Baumberger, T., & Caroli, C. (2006). Solid friction from stick-slip down to pinning and aging. Advances in Physics,55(3–4), 279–348.

    Google Scholar 

  • Boneh, Y., Chang, J. C., Lockner, D. A., & Reches, Z. (2014). Evolution and wear and friction along experimental faults. Pure and Applied Geophysics,171, 3125–3141.

    Google Scholar 

  • Cavarretta, I., Coop, M. R., & O’Sullivan, C. (2010). The influence of particle characteristics on the behaviour of coarse-grained soils. Geotechnique,60(6), 413–423.

    Google Scholar 

  • Cavarretta, I., Rocchi, I., & Coop, M. R. (2011). A new interparticle friction apparatus for granular materials. Canadian Geotechnical Journal,48(12), 1829–1840.

    Google Scholar 

  • Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics,124, 79–106.

    Google Scholar 

  • Cole, D. M., Mathisen, L. U., Hopkins, M. A., & Knapp, B. R. (2010). Normal and sliding contact experiments on gneiss. Granular Matter,12, 69–86.

    Google Scholar 

  • Cole, D. M., & Peters, J. F. (2008). Grain-scale mechanics of geologic materials and lunar simulants under normal loading. Granular Matter,10, 171–185.

    Google Scholar 

  • D’Ignazio, M., & Lansivaara, T. (2015). Shear bands in soft clays: Strain-softening behavior in finite element method. Journal of Structural Mechanics,48(1), 83–98.

    Google Scholar 

  • Dorostkar, O., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2017a). On the micromechanics of slip events in sheared, fluid saturated fault gouge. Geophysical Research Letters. https://doi.org/10.1002/2017GL073768.

    Article  Google Scholar 

  • Dorostkar, O., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2017b). On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid and Earth. https://doi.org/10.1002/2017JB014099.

    Article  Google Scholar 

  • Engelder, J. T., Logan, J. M., & Handin, J. (1975). The sliding characteristics of sandstone on quartz fault-gouge. Pure and Applied Geohysics,113(1), 69–86.

    Google Scholar 

  • Greenwood, J. A., & Williamson, J. B. P. (1966). Contact of nominally flat surfaces. Proceedings of Royal Society of London A,295, 300–319.

    Google Scholar 

  • Gu, Y., & Wong, T. F. (1994). Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size. Pure and Applies Geophysics,143(1–3), 387–423.

    Google Scholar 

  • Guo, Y., & Morgan, J. K. (2004). Influence of normal stress and grain shape on granular friction: Results of discrete element simulations. Journal of Geophysical Research,109, B12305. https://doi.org/10.1029/2004JB003044.

    Article  Google Scholar 

  • Guo, Y., & Morgan, J. K. (2006). The frictional and micromechanical effects of grain comminution in fault gouge from distinct element simulations. Journal of Geophysical Research,111, B12406. https://doi.org/10.1029/2005JB004049.

    Article  Google Scholar 

  • Gylland, A. S., Jostad, H. P., & Nordal, S. (2014). Experimental study of strain localization in sensitive clays. Acta Geotechnica,9(2), 227–240.

    Google Scholar 

  • Horn, H. M., & Deere, D. U. (1962). Frictional characteristics of minerals. Geotechnique,12(4), 319–335.

    Google Scholar 

  • Jensen, R. P., Edil, T. B., Bosscher, P. J., Plesha, M. E., & Kahla, N. B. (2001). Effect of particle shape on interface behavior of DEM-simulated granular materials. International Journal of Geomechanics. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:1(1).

    Article  Google Scholar 

  • Jostad, H. P., Fornes, P., & Thakur, V. (2014). Effect of strain-softening in design of fills on gently inclined areas with soft sensitive clays, landslides in sensitive clays (pp. 305–316). Amsterdam: Springer.

    Google Scholar 

  • Kasyap, S. S., & Senetakis, K. (2018). A micromechanical experiments of kaolinite-coated sand grains. Tribology International,126, 206–217.

    Google Scholar 

  • Kasyap, S. S., Senetakis, K., & Zhao, J. (2019). Cyclic normal load-displacement behaviour of clay-coated sand grain contacts. Géotechnique. https://doi.org/10.1680/jgeot.18.P.216.

    Article  Google Scholar 

  • Katz, O., Reches, Z., & Baer, G. (2003). Faults and their associated host rock deformation: Structure of small faults in a quartz-syenite body, southern Israel. Journal of Structural Geology,25, 1675–1689.

    Google Scholar 

  • Kim, K. Y., Suh, H. S., Yun, T. S., Moon, S., & Seo, Y. (2016). Effect of particle shape on the shear strength of fault gouge. Geosciences Journal,20(3), 351–359.

    Google Scholar 

  • Kock, I. (2007). Deformation and micromechanics of granular materials in shear zones—Investigated with discrete element method, Ph.D. Dissertation. Faculty of Geoscience of Bremen University.

  • Krick, B. A., Vail, J. R., Persson, B. N. J., & Sawyer, W. G. (2012). Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribology Letters,45, 185–194.

    Google Scholar 

  • Logan, J. M., & Rauenzahn, K. A. (1987). Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric. Tectonophysics,144, 87–108.

    Google Scholar 

  • Luding, S. (2008). Cohesive, frictional powders: Contact models for tension. Granular Matter,10, 235–246.

    Google Scholar 

  • Mair, K., & Abe, S. (2008). 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. Earth and Planetary Science Letters,274(1–2), 72–81.

    Google Scholar 

  • Mair, K., & Abe, S. (2011). Breaking up: Comminution mechanisms in sheared simulated fault gouge. Pure and Applied Geophysics,168, 2277–2288.

    Google Scholar 

  • Mair, K., Frye, K. M., & Marone, C. (2002). Influence of grain characteristics on the friction of granular shear zones. Journal of Geophysical Research,107(B10), 2219. https://doi.org/10.1029/2001JB000516.

    Article  Google Scholar 

  • Nardelli, V. (2017). An experimental investigation of the micromechanical contact behaviour of soils, Ph.D. Dissertation. Architecture and Civil Engineering Department, City University of Hong Kong.

  • Nardelli, V., & Coop, M. R. (2018). The experimental contact behaviour of natural sands: Normal and tangential loading. Geotechnique. https://doi.org/10.1680/jgeot.17.P.167.

    Article  Google Scholar 

  • Nardelli, V., Coop, M. R., Andrade, J. E., & Paccagnella, F. (2017). An experimental investigation of the micromechanics of Eglin sand. Powder Technology,312, 166–174.

    Google Scholar 

  • Otsubo, M., & O’Sullivan, C. (2018). Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus. Soils and Foundations,58(3), 602–614.

    Google Scholar 

  • Pohlman, N. A., Severson, B. J., Ottino, J. M., & Lueptow, R. M. (2006). Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation. Physical Review E,73(031304), 1–9.

    Google Scholar 

  • Rutter, E. H., Maddock, R. H., Hall, S. H., & White, S. H. (1986). Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics,124(1–2), 3–30.

    Google Scholar 

  • Sammis, C. G., & Biegel, R. L. (1989). Fractals, fault-gouge, and friction. Pure and Applied Geophysics,131(1–2), 255–271.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018a). Grain-scale mechanics of quartz sand under normal and tangential loading. Tribology International,117, 261–271.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018b). Effects of Young’s modulus and surface roughness on the inter-particle friction of granular material. Materials,31, 2.

    Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2018c). The tribological behavior of two potential-landslide saprolitic rocks. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1939-1.

    Article  Google Scholar 

  • Sandeep, C. S., & Senetakis, K. (2019). An experimental investigation of the microslip displacement of geological materials. Computers and Geotechnics,107, 55–67.

    Google Scholar 

  • Sazzad, M., & Suzuki, K. (2011). Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. Journal of Geotechnical and Geoenvironmental Engineering,137(5), 545–549.

    Google Scholar 

  • Senetakis, K., & Coop, M. R. (2014). The development of a new micro-mechanical inter-particle loading apparatus. Geotechnical Test Journal,37(6), 1028–1039.

    Google Scholar 

  • Senetakis, K., Coop, M. R., & Todisco, M. C. (2013a). Tangential load-deflection behaviour at the contacts of soil particles. Geotechnique Letters,3, 59–66.

    Google Scholar 

  • Senetakis, K., Coop, M. R., & Todisco, M. C. (2013b). The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals. Soils and Foundations,53(5), 746–755.

    Google Scholar 

  • Skinner, A. E. (1969). A note on the influence of interparticle friction on shearing strength of a random assembly of spherical particles. Geotechnique,19, 150–157.

    Google Scholar 

  • Takahashi, M., Mizoguchi, K., Kitamura, K., & Masuda, K. (2007). Effects of clay content on the frictional strength and fluid transport property of faults. Journal of Geophysical Research. https://doi.org/10.1029/2002JB002190.

    Article  Google Scholar 

  • Tembe, S., Lockner, D. A., & Wong, T. F. (2010). Effects of clay content and minerology in frictional sliding behaviour of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. Journal of Geophysical Research. https://doi.org/10.1029/2009JB006383.

    Article  Google Scholar 

  • Thakur, V. (2011). Experimentally observed shear bands in a Scandinavian soft clay subjected to an undrained shearing under the plane strain condition. International Workshop on Landslides in Sensitive Clays. https://doi.org/10.1201/B17435-50.

    Article  Google Scholar 

  • Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Geotechnique,50(1), 43–53.

    Google Scholar 

  • Verberne, B. A., Spiers, C. J., Neimeijer, A. R., De Bersser, J. H. P., De Winter, D. A. M., & Plumper, O. (2014). Frictional properties and microstructure of Calcite-rich fault gouges sheared at Sub-seismic sliding velocities. Pure and Applied Geophysics,171(2014), 2617–2640.

    Google Scholar 

  • Walton, O. R., & Johnson, S. M. (2009). Simulating the effects of interparticle cohesion in micron-scale powders. AIP Conference Proceedings,1145, 897–900.

    Google Scholar 

  • Wang, W., & Coop, M. R. (2016). An investigation of breakage behaviour of single sand particles using a high-speed microscope camera. Geotechnique,66(12), 984–998.

    Google Scholar 

  • Yimsiri, S., & Soga, K. (2000). Micromechanics-based stress-strain behaviour of soils at small strain. Geotechnique,50(5), 559–571.

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by the grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, project no. “CityU 11206617” and project no. “CityU 11214218”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Senetakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasyap, S.S., Senetakis, K. An Experimental Investigation on the Tribological Behaviour of Nominally Flat Quartz Grains with Gouge Material in Dry, Partial Saturated and Submersed Conditions. Pure Appl. Geophys. 177, 3283–3300 (2020). https://doi.org/10.1007/s00024-020-02431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02431-1

Keywords

Navigation