Skip to main content

Advertisement

Log in

Net autotrophy in a fluvial lake: the relative role of phytoplankton and floating-leaved macrophytes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

This study combined water- and sediment flux measurements with mass balances of dissolved gas and inorganic matter to determine the importance of pelagic and benthic processes for whole-system metabolism in a eutrophic fluvial lake. Mass balances of dissolved O2, inorganic carbon (DIC), nitrogen (DIN), phosphorous (SRP), particulate N (PN) and P (PP) and Chl a were calculated at a nearly monthly frequency by means of repeated sampling at the lake inlet and outlet. Simultaneously, benthic fluxes of gas and nutrients, including denitrification rates, and the biomass of the dominant pleustophyte (Trapa natans) were measured, and fluxes of O2 and CO2 across the water–atmosphere interface were estimated from diel changes in outlet concentrations. On an annual scale, Middle Lake exhibited CO2 supersaturation, averaging 313% (range 86–562%), but was autotrophic with a net O2 production (6.35 ± 2.05 mol m−2 y−1), DIC consumption (−31.18 ± 18.77 mol m−2 y−1) and net export of Chl a downstream (8.38 ± 0.95 mol C m−2 y−1). Phytoplankton was the main driver of Middle Lake metabolism, with a net primary production estimated at 33.24 mol O2 m−2 y−1, corresponding to a sequestration of 4.18 and 0.26 mol m−2 y−1 of N and P, respectively. At peak biomass, T. natans covered about 18% of Middle Lake’s surface and fixed 2.46, 0.17 and 0.02 mol m−2 of C, N and P, respectively. Surficial sediments were a sink for O2 (−14.47 ± 0.65 mol O2 m−2 y−1) and a source of DIC and NH4 + (18.84 ± 2.80 mol DIC m−2 y−1 and 0.83 ± 0.16 mol NH4 + m−2 y−1), and dissipated nitrate via denitrification (1.44 ± 0.11 mol NO3  m−2 y−1). Overall, nutrient uptake by primary producers and regeneration from sediments were a minor fraction of external loads. This work suggests that the creation of fluvial lakes can produce net autotrophic systems, with elevated rates of phytoplanktonic primary production, largely sustained by allochtonous nutrient inputs. These hypereutrophic aquatic bodies are net C sinks, although they simultaneously release CO2 to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LG, Hall POJ, Iverfeldt A, van der Loeff MMR, Sundby B, Westerlund SFG (1986) Benthic respiration measured by total carbonate production. Limnol Oceanogr 31:319–329

    Article  CAS  Google Scholar 

  • APHA, AWWA, and WPCF (1981) Standard methods for the examination of water and wastewater. Am Publ Health Ass, Washington, pp 440 (Method 422)

  • Asaeda T, Trung VK, Manatunge J (2000) Modeling the effects of macrophyte growth and decomposition on the nutrient budget in Shallow Lakes. Aquat Bot 68:217–237

    Article  Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semiautomated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  PubMed  CAS  Google Scholar 

  • Avnimelech Y, Kochva M, Hargreaves JA (1999) Sedimentation and resuspension in Earthen fish ponds. J World Aquac Soc 30(4):401–409

    Article  Google Scholar 

  • Azzi E (1988) Mantua and the problem of its lakes (in italian). Edizioni Bottazzi Suzzara, pp 39

  • Bergström I, Mäkelä S, Kankaala P, Kortelainen P (2007) Methane efflux from littoral vegetation stands of southern boreal lakes: an upscaled regional estimate. Atmos Environ 41:339–351

    Article  Google Scholar 

  • Blindow I, Hargeby A, Meyercordt J, Schubert H (2006) Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnol Oceanogr 51(6):2711–2721

    Article  Google Scholar 

  • Blinn DW, Shannon JP, Benenati PL, Wilson KP (1998) Algal ecology in Tailwater stream communities: the Colorado River below Glen Canyon dam, Arizona. J Phycol 34:734–740

    Article  Google Scholar 

  • Boström B, Andersen J, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170:229–244

    Article  Google Scholar 

  • Bresciani M, Giardino C, Longhi D, Pinardi M, Bartoli M, Vascellari M (2009) Imaging spectrometry of productive inland waters. Application to the lakes of Mantua. Italian J Remote Sens 41(2):147–156

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA, Gibbs MM (2007) Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584:13–25

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ (2002) Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecol Appl 12(5):1496–1509

    Article  Google Scholar 

  • Caraco N, Cole JJ, Findlay S, Wigand C (2006) Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56:219–225

    Article  Google Scholar 

  • Cattaneo A, Galanti G, Gentinetta S, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshw Biol 39:725–740

    Article  Google Scholar 

  • Cloern JE, Grenz C, Lucas LV (1995) An empirical model of the phytoplankton chlorophyll:carbon ratio—the conversion factor between productivity and growth rate. Limnol Oceanogr 40:1313–1321

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard T, Nielsen LP, Brotas V, Viaroli P, Underwood GJC, Nedwell DB, Sundbäck K, Rysgaard S, Miles A, Bartoli M, Dong L, Thornton DCO, Ottosen LDM, Castaldelli G, Risgaard-Petersen N (2000) Protocol handbook for NICE-Nitrogen cycling in estuaries: a project under the EU research programme. Marine Science and Technology (MAST III). National Environmental Research Institute, Silkeborg, Denmark, 62 pp

  • Dickman M (1969) Some effects of lake renewal on phytoplankton productivity and species composition. Limnol Oceanogr 14:660–666

    Article  Google Scholar 

  • Duarte CM, Praire YT (2005) Prevalence of heterotrophy and atmosphere CO2 emission from aquatic ecosystems. Ecosystems 8:862–870

    Article  CAS  Google Scholar 

  • Dubois K, Carignan R, Veizer J (2009) Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes? Appl Geochem 24(5):988–998

    Article  CAS  Google Scholar 

  • Ekholm P, Malve O, Kirkkala T (1997) Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi (southwest Finland). Hydrobiologia 345:3–14

    Article  CAS  Google Scholar 

  • Elmore HL, West WF (1961) Effects of water temperature on stream reaeration. J Sanit Eng Div ASCE 87(SA6):59–71

    Google Scholar 

  • Emerson S (1975) Chemically enhanced CO2 gas exchange in a eutrophic lake: a general model. Limnol Oceanogr 20(5):743–753

    Article  CAS  Google Scholar 

  • Fallon RD, Brock TD (1980) Planktonic blue-green algae: production, sedimentation, and decomposition in Lake Mendota, Wisconsin. Limnol Oceanogr 25(l):72–88

    Article  CAS  Google Scholar 

  • Filbin GJ, Hough RA (1985) Photosynthesis, photorespiration and productivity in Lemna minor L. Limnol Oceanogr 30(2):322–334

    Article  CAS  Google Scholar 

  • Findlay S, Howe K, Austin HK (1990) Comparison of detritus dynamica in two tidal freshwater wetlands. Ecology 71(1):288–295

    Article  Google Scholar 

  • Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64:55–65

    Article  CAS  Google Scholar 

  • Galanti G, Topa Esposito A (1996) The invasive capacity of water chestnut as shown in the management of a natural population in Lago di Candia. Lake Reserv Manag 2:31–36

    Article  Google Scholar 

  • Goodwin K, Caraco N, Cole JJ (2008) Temporal dynamics of dissolved oxygen in a floating leaved macrophyte bed. Freshw Biol. doi:10.1111/j.1365-2427.2008.01983.x

  • Granéli W, Solander D (1988) Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170:245–266

    Article  Google Scholar 

  • Hart EA, Lovvorn JR (2000) Vegetation dynamics and primary production in saline, lacustrine wetlands of a Rocky Mountain basin. Aquat Bot 66:21–39

    Article  Google Scholar 

  • Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha TM (2009) Effect of main-stem dams on zooplankton communities of the Missouri River. Hydrobiologia 628:121–135

    Article  Google Scholar 

  • Hilton J, O’hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365:66–83

    Article  PubMed  CAS  Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, Bodungen BV (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388

    Article  CAS  Google Scholar 

  • Humborg C, Mörth CM, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekot V (2010) CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Chang Biol 16(7):1966–1978

    Article  Google Scholar 

  • Hummell M, Findlay S (2006) Effects of water chestnut (Trapa natans) beds on water chemistry in the tidal freshwater Hudson River. Hydrobiologia 559:169–181

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301

    Article  PubMed  CAS  Google Scholar 

  • Koschel R (1990) Pelagic calcite precipitation and trophic state of hard water lakes. Arch Hydrobiol Beih 33:713–722

    CAS  Google Scholar 

  • Krivtsov V, Sigee DC (2005) Importance of biological and abiotic factors for geochemical cycling in a freshwater eutrophic lake. Biogeochemistry 74:205–230

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. Carbon dioxide information analysis centre, Oak Ridge. ORNL/CDIAC-105

  • Lorenzen CJ (1967) Determination of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • MacIntyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across the air-water interface in freshwaters and coastal marine environments. In: Matson PA, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Balckwell, Dover, p 52–97

  • Marion L, Paillisson JM (2003) A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquat Bot 75:249–260

    Article  Google Scholar 

  • McCartney M (2009) Living with dams: managing the environmental impacts. Water Policy 11:121–139

    Article  Google Scholar 

  • Miranda LE, Hodges KB (2000) Role of aquatic vegetation coverage on hypoxia and sunfish abundance in bays of a eutrophic reservoir. Hydrobiologia 427:51–57

    Article  Google Scholar 

  • Moore BC, Funk WH, Anderson E (1994) Water quality, fishery, and biologic characteristics in a shallow, eutrophic lake with dense macrophyte populations. Lake Reserv Manag 8:175–188

    Article  Google Scholar 

  • Moore PA, Reddy KR, Fisher MM (1998) Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: spatial and temporal variation. J Environ Qual 27:1428–1439

    Article  CAS  Google Scholar 

  • Nekrasova GF, Ronzhina DA, Maleva MG, P’yankov VI (2003) Photosynthetic metabolism and activity of carboxylating enzymes in emergent, floating, and submersed leaves of hydrophytes. Russ J Plant Physiol 50(1):57–67

    Article  CAS  Google Scholar 

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (eds) (2005) Glossary of Geology, 5th edn. American Geology Institute. Springer, Berlin, 779 pp

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS (Federation of European Microbiological Societies) Microbiol Ecol 86:357–362

    Article  CAS  Google Scholar 

  • Nõges P, Järvet A, Tuvikene L, Nõges T (1998) The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 363:219–227

    Article  Google Scholar 

  • Nõges N, Luup H, Feldmann T (2010) Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquat Ecol 44:83–92

    Article  Google Scholar 

  • Nowlin WH, Evarts JL, Vanni MJ (2005) Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw Biol 50:301–322

    Article  CAS  Google Scholar 

  • O’Farrell I, De Tezanos Pinto P, Rodríguez PL, Chaparro G, Pizarro HN (2009) Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshw Biol 54:363–375

    Article  Google Scholar 

  • Pierobon E, Bolpagni R, Bartoli M, Viaroli P (2010) Net primary production and seasonal CO2 and CH4 fluxes in a Trapa natans L. meadow. J Limnol 69(2):225–234

    Google Scholar 

  • Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130

    Article  Google Scholar 

  • Power ME, Dietrich WE, Finlay JC (1996) Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environ Manag 20(6):887–895

    Article  Google Scholar 

  • Qu WC, Morrison RJ, West RJ (2005) Diagenetic stoichiometry and benthic nutrient fluxes at the sediment–water interface of Lake Illawarra, Australia. Hydrobiologia 537:249–264

    Article  CAS  Google Scholar 

  • Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20:381–390

    Article  CAS  Google Scholar 

  • Rennella AM, Quiros R (2006) The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556:181–191

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess L (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  PubMed  CAS  Google Scholar 

  • Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, epiphyton and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137–175

    Article  Google Scholar 

  • Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466

    Article  CAS  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M, Szabo S, Gragnani A, van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RMM, Franken RJM (2003) Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100:4040–4045

    Article  PubMed  CAS  Google Scholar 

  • Shannon JP, Blinn DW, McKinney T, Benenati EP, Wilson KP, O’Brien C (2001) Aquatic food base response to the 1996 test flood below Glen Canyon Dam, Colorado River, Arizona. Ecol Appl 11(3):672–685

    Article  Google Scholar 

  • Søballe DM, Bachmann RW (1984) Influence of reservoir transit on riverine algal transport and abundance. Can J Fish Aquat Sci 41:1803–1813

    Article  Google Scholar 

  • Sternberg R (2006) Damming the river: a changing perspective on altering nature. Renew Sustain Energy Rev 10:165–197

    Article  Google Scholar 

  • Stets EG, Striegl RG, Aiken GR, Rosenberry DO (2009) Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of sea-water analysis (2nd edn). J Fish Res Board Can 167, 311 pp

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Teodoru C, Wehrli B (2005) Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76(3):539–565

    Article  CAS  Google Scholar 

  • Vadeboncoeur Y, Steinman AD (2002) Periphyton function in lake ecosystems. Sci World J 2:1449–1468

    Google Scholar 

  • van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274

    Article  Google Scholar 

  • Vis C, Hudon C, Carignan R, Gagnon P (2007) Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10:293–310

    Article  Google Scholar 

  • Vollenweider RA (1974) A manual on methods for measuring primary productivity in aquatic environments. Blackwell, Oxford

    Google Scholar 

  • Walz N, Welker M (1998) Plankton development in a rapidly flushed lake in the River Spree system (Neuendorfer See, Northeast Germany). J Plankton Res 20(11):2071–2087

    Article  Google Scholar 

  • Wanninkhof R, Knox M (1996) Chemical enchancement of CO2 exchange in natural waters. Limnol Oceanogr 41:689–697

    Article  CAS  Google Scholar 

  • Welker M, Walz N (1999) Plankton dynamics in a river-lake system—on continuity and discontinuity. Hydrobiologia 408:233–239

    Article  Google Scholar 

  • Wetzel RG (1964) A comparative study of the primary productivity of higher plants, periphyton and phytoplankton in large shallow lake. Internationale Revue der gesamten Hydrobiologie und Hydrographie 49:1–61

    Article  Google Scholar 

  • Xing Y, Xiea P, Yang H, Ni L, Wang Y, Rong K (2005) Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China. Atmos Environ 39:5532–5540

    Article  CAS  Google Scholar 

  • Yamamuro M, Hiratsuka J, Ishitobi Y, Hosokawa S, Nakamura Y (2006) Ecosystem shift resulting from loss of eelgrass and other submerged aquatic vegetation in two estuarine lagoons, Lake Nakaumi and Lake Shinji, Japan. J Oceanogr 62:551–558

    Article  Google Scholar 

  • Yang H, Xing Y, Xie P, Ni L, Rong K (2008) Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environ Pollut 151:559–568

    Article  PubMed  CAS  Google Scholar 

  • Yao G, Gao Q, Wang Z, Huang X, He T, Zhang Y, Jiao S, Ding J (2007) Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Mincio Regional Park and the Mantua Province within the STRARIFLU project (Requalification Strategies for the Mincio River). We wish to thank S. Tavernini for the screening of phytoplanktonic community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bartoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinardi, M., Bartoli, M., Longhi, D. et al. Net autotrophy in a fluvial lake: the relative role of phytoplankton and floating-leaved macrophytes. Aquat Sci 73, 389–403 (2011). https://doi.org/10.1007/s00027-011-0186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0186-7

Keywords

Navigation