Skip to main content
Log in

Competitive effects of fish in structurally simple habitats: perch, invertebrates, and goldeneye in small boreal lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We determined the associations between Eurasian perch Perca fluviatilis, invertebrates, and common goldeneye Bucephala clangula in boreal lakes. Our aim was to test the hypothesis that perch play a controlling role in small, oligotrophic, acidic, and poorly vegetated boreal lakes, affecting both invertebrate numbers and community structure. In addition, we predicted that perch impact lake usage by goldeneye. In the observational part of our study, we first explored the association between perch, invertebrates and goldeneye (pairs and broods per shore km) in 18 boreal, poorly vegetated lakes. Perch densities were associated negatively with invertebrate abundance and lake usage by goldeneye broods. In the experimental part in three fish-free lakes, we found that upon successful perch introductions, the number and biomass of invertebrates, the proportion of large dytiscids, and lake usage by goldeneye broods significantly decreased. We conclude that perch apparently plays a key role as a predator of invertebrates in boreal lakes with few aquatic macrophytes. It is evident that perch can strongly affect their prey populations and communities, and this predation may have an indirect effect on species, e.g. goldeneye, that consume the same prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appelberg M, Henrikson B-I, Henrikson L, Svedäng M (1993) Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22:290–297

    Google Scholar 

  • Appelberg M, Berger HM, Hesthagen T, Kleiven E, Kurkilahti M, Raitaniemi J, Rask M (1995) Development and intercalibration of methods in Nordic freshwater fish monitoring. Water Air Soil Poll 85:401–406

    Article  CAS  Google Scholar 

  • Bagenal TB, Tesch FW (1978) Age and growth. In: Bagenal TB (ed) Fish production of fresh waters. IBP-Handbook 3. Blackwell Scientific Publications, Oxford, pp 101–136

    Google Scholar 

  • Batzer DP (1998) Trophic interactions among detritus, benthic midges, and predatory fish in a freshwater marsh. Ecology 79:1688–1698

    Article  Google Scholar 

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100

    Article  PubMed  CAS  Google Scholar 

  • Batzer DP, Pusateri CR, Vetter R (2000) Impacts of fish predation on marsh invertebrates: direct and indirect effects. Wetlands 20:307–312

    Article  Google Scholar 

  • Becerra Jurado G, Masterson M, Harrington R, Kelly-Quinn M (2008) Evaluation of sampling methods for macroinvertebrate biodiversity estimation in heavily vegetated ponds. Hydrobiologia 597:97–107. doi:10.1007/s10750-007-9217-8

    Article  Google Scholar 

  • Bendell BE, McNicol DK (1987) Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150:193–202

    Article  Google Scholar 

  • Bond W (2001) Keystone species—Hunting the snark? Science 292:63–64

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813

    Article  Google Scholar 

  • Culler LE, Lamp WO (2009) Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshw Biol 54:2003–2014. doi:10.1111/j.1365-2427.2009.02230.x

    Article  Google Scholar 

  • Diehl S (1992) Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646–1661

    Article  Google Scholar 

  • Diehl S, Kornijov R (1997) Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 24–46

    Google Scholar 

  • Eadie JM, Keast A (1982) Do goldeneye and perch compete for food? Oecologia 55:225–230

    Article  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1992) Do intruding predators and trap position affect the reliability of catches in activity traps? Hydrobiol 239:187–193

    Article  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1993) Factors affecting species number and density of dabbling duck guilds in North Europe. Ecography 16:251–260

    Article  Google Scholar 

  • Elmberg J, Dessborn L, Englund G (2010) Presence of fish affects lake use and breeding success in ducks. Hydrobiol 641:215–223. doi:10.1007/s10750-009-0085-2

    Article  CAS  Google Scholar 

  • Eriksson MOG (1979) Competition between freshwater fish and goldeneyes Bucephala clangula (L.) for common prey. Oecologia 41:99–107

    Article  Google Scholar 

  • Eriksson MOG (1983) The role of fish in the selection of lakes by nonpiscivorous ducks: mallard, teal and goldeneye. Wildfowl 34:27–32

    Google Scholar 

  • Eriksson MOG, Henrikson L, Nilsson B-I, Nyman G, Oscarson HG, Stenson AE, Larsson K (1980) Predator-prey relations important for the biotic changes in acidified lakes. Ambio 9:248–249

    Google Scholar 

  • European Standard EN 14757 (2005)Water quality—sampling fish with multimesh gillnets. CEN 2005

  • Evans RA (1989) Response of limnetic insect populations of two acidic, fishless lakes to liming and brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 46:342–351

    Article  Google Scholar 

  • Giles N (1994) Tufted duck (Aythya fuligula) habitat use and brood survival increases after fish removal from gravel pit lakes. Hydrobiol 279(280):387–392

    Article  Google Scholar 

  • Gilinsky E (1984) The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65:455–468

    Article  Google Scholar 

  • Haas K, Köhler U, Diehl S, Köhler P, Dietrich S, Holler S, Jaensch A, Niedermaier M, Vilsmeier J (2007) Influence of fish on habitat choice of water birds: a whole system experiment. Ecology 88:2915–2925

    Article  PubMed  Google Scholar 

  • Hanson MA, Riggs MR (1995) Potential effects of fish predation on wetland invertebrates: a comparison of wetlands with and without fathead minnows. Wetlands 15:167–175

    Article  Google Scholar 

  • Heck KL Jr, Crowder LB (1990) Habitat structure and predator-prey interactions in vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure. The physical arrangement of objects in space. Chapman and Hall, London, pp 281–299

    Google Scholar 

  • Hunter ML Jr, Jones JJ, Gibbs KE, Moring JR (1986) Duckling responses to lake acidification: do black ducks and fish compete? Oikos 47:26–32

    Article  Google Scholar 

  • Hyvönen T, Nummi P (2000) Activity traps and the corer: complementary methods for sampling aquatic invertebrates. Hydrobiol 432:121–125

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218. doi:10.1046/j.1365-2427.2000.00675.x

    Article  CAS  Google Scholar 

  • Lappalainen A, Rask M, Vuorinen J (1988) Acidification affects the perch Perca fluviatilis L., populations in small lakes of southern Finland. Env Biol Fishes 21:231–239

    Article  Google Scholar 

  • McNicol DK, Bendell BE, Ross RK (1987a) Studies on the effects of acidification on aquatic wildlife in Canada: waterfowl and trophic relationships in small lakes in northern Ontario. Can Wildl Serv Occ Pap 62

  • McNicol DK, Bendell BE, McAuley DG (1987b) Avian trophic relationships and wetland acidity. Trans N Am Wildl Nat Res Conf 52:619–627

    Google Scholar 

  • Morin PJ (1984) The impact on fish exclusion on the abundance and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology 65:53–60

    Article  Google Scholar 

  • Murkin HR, Abbot PG, Kadlec JA (1983) Comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Fresh Invert Biol 2:99–106

    Article  Google Scholar 

  • Nudds TD, Bowlby JN (1984) Predator-prey size relationships in North American dabbling ducks. Can J Zool 62:2002–2008

    Article  Google Scholar 

  • Nummi P, Pöysä H (1993) Habitat association of ducks during different phases of the breeding season. Ecography 16:319–328

    Article  Google Scholar 

  • Nummi P, Väänänen V-M, Malinen J (2006) Alien grazing: indirect effects of muskrat on invertebrates. Biol Inv 8:993–999. doi:10.1007/s10530-1197-x

    Article  Google Scholar 

  • Nyberg K, Raitaniemi J, Rask M, Mannio J, Vuorenmaa J (1995) What can perch population data tell us about the acidifi-cation history of a lake? Water Air Soil Poll 85:395–400

    Article  CAS  Google Scholar 

  • Nyberg K, Vuorenmaa J, Tammi J, Nummi P, Väänänen V-M, Mannio J, Rask M (2010) Re-establishment of perch in three lakes recovering from acidification: rapid growth associated with abundant food resources. Bor Env Res 15:480–490

    CAS  Google Scholar 

  • Olin M, Rask M, Ruuhijärvi J, Kurkilahti M, Ala-Opas P, Ylönen O (2002) Fish community structure in meso- and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. J Fish Biol 60:593–612

    Article  Google Scholar 

  • Paasivaara A, Pöysä H (2004) Mortality of common goldeneye (Bucephala clangula) in relation to predation risk by northern pike (Esox lucius). Ann Zool Fennici 41:513–523

    Google Scholar 

  • Parker GR, Petrie MJ, Sears DT (1992) Waterfowl distribution relative to wetland acidity. J Wildl Manage 56:268–274

    Article  Google Scholar 

  • Pätilä A (1986) Survey of acidification by airborne pollutants in 52 lakes in southern Finland. Aqua Fennica 16:203–210

    Google Scholar 

  • Peura P (1990) Happamoituminen Pohjois-Espoon järvissä. Espoon ympäristönsuojelulautakunnan julkaisu 5/90 (in Finnish)

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Pöysä H, Rask M, Nummi P (1994) Acidification and ecological interactions at higher trophic levels in small forest lakes: the perch and the common goldeneye. Ann Zool Fennici 31:317–404

    Google Scholar 

  • Raitaniemi J, Rask M, Vuorinen PJ (1988) The growth of perch (Perca fluviatilis) in small Finnish lakes at different stages of acidification. Ann Zool Fennici 25:209–219

    Google Scholar 

  • Rask M, Mannio J, Forsius M, Posch M, Vuorinen PJ (1995) How many fish populations in Finland are affected by acid precipitation. Env Biol Fishes 42:51–63

    Article  Google Scholar 

  • Rask M, Pöysä H, Nummi P, Karppinen C (2001) Recovery of the perch (Perca fluviatilis) in an acidified lake and subsequent responses in macroinvertebrates and the goldeneye (Bucephala clangula). Water, Air, Soil Poll 130:1367–1372

    Article  Google Scholar 

  • Rask M, Olin M, Ruuhijärvi J (2010) Fish-based assessment of ecological status of Finnish lakes loaded by diffuse nutrient pollution from agriculture. Fish Manage Ecol 17:126–133. doi:10.1111/j.1365-2400.2009.00685.x

    Article  Google Scholar 

  • Resetarits WJ Jr (2001) Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129:155–160. doi:10.1007/s004420100704

    Article  Google Scholar 

  • Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998. doi:10.1111/j.1461-0248.2009.01347.x

    Article  PubMed  Google Scholar 

  • Tammi J, Appelberg M, Beier U, Hesthagen T, Lappalainen A, Rask M (2003) Fish status of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32:98–105

    PubMed  Google Scholar 

  • Tammi J, Rask M, Vuorenmaa J, Lappalainen A, Vesala S (2004) Population responses of perch (Perca fluviatilis) and roach (Rutilus rutilus) to recovery from acidification in small Finnish lakes. Hydrobiologia 528:107–122

    Article  CAS  Google Scholar 

  • Thorpe JE (1977) Morphology, physiology, behaviour, and ecology of Perca fluviatilis L. and Perca flavescens Mitchell. J Fish Res Board Can 34:1504–1514

    Article  Google Scholar 

  • Tolonen K, Jaakkola T (1983) History of lake acidification and air pollution studied in sediments in south Finland. Ann Bot Fennici 20:57–78

    CAS  Google Scholar 

  • Tome MW (1988) Optimal foraging: food patch depletion by ruddy ducks. Oecologia 76:27–36

    Google Scholar 

  • Tonn WM, Magnuson JJ, Rask M, Toivonen J (1990) Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am Nat 136:345–375

    Article  Google Scholar 

  • Vuorenmaa J (2007) Recovery responses of acidified Finnish lakes under declining acid deposition. Monogr Bor Env Res 30, Finnish Environment Institute, Helsinki

  • Welborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Ann Rev Ecol Syst 27:337–363

    Article  Google Scholar 

Download references

Acknowledgments

Jani Pellikka, Hannu Pöysä and two anonymous referees provided valuable comments on the manuscript, James Thompson kindly checked the language, and Esa Pienmunne helped us in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri Nummi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nummi, P., Väänänen, VM., Rask, M. et al. Competitive effects of fish in structurally simple habitats: perch, invertebrates, and goldeneye in small boreal lakes. Aquat Sci 74, 343–350 (2012). https://doi.org/10.1007/s00027-011-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0225-4

Keywords

Navigation