Skip to main content
Log in

Hypoxic blackwater events suppress the emergence of zooplankton from wetland sediments

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The increased incidence of severe hypoxic ‘blackwater’ (high dissolved organic carbon, DOC) events as a consequence of river regulation and other river management practices poses a threat to the management of many river-floodplain systems. However, there is still a lack of fundamental knowledge regarding the effects of hypoxic blackwater events on the aquatic biota. Zooplankton occupy a central position in river-floodplain food webs, as consumers of algae, fungi and bacteria, and as potential prey items for fish, waterbirds, amphibians and macroinvertebrates. We investigated the impact of hypoxic blackwater events on river-floodplain zooplankton assemblages by examining the effects of varying DOC and dissolved oxygen concentrations on zooplankton emerging from the sediments of two floodplain wetlands in the southern Murray–Darling Basin, Australia. Hypoxic conditions significantly reduced the taxon richness and abundance of zooplankton emerging from the sediments of each wetland, whereas DOC concentration alone had no consistent effects. The effects of hypoxia on zooplankton were partially reversed when oxygen concentrations were returned to normal values within 3 weeks. These findings suggest that hypoxic blackwater events can reduce the availability of food resources to planktivorous biota through their reductions in zooplankton abundance; although these resources may be restored reasonably quickly if oxygenated conditions are returned within a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) Permanova+ for Primer: Guide to Software and Statistical Methods. National Environment Research Council, Plymouth

    Google Scholar 

  • Angeler DG, García G (2005) Using emergence from soil propagule banks as indicators of ecological integrity in wetlands: advantages and limitations. J N Am Benthol Soc 24:740–752

    Article  Google Scholar 

  • Bass JA, Pinder LCV, Leach DV (1997) Temporal and spatial variation in zooplankton populations in the River Great Ouse: an ephemeral food resource for larval and juvenile fish. Regul Rivers Res Manag 13:245–258

    Article  Google Scholar 

  • Battauz YS, de Paggi SBJ, Paggi JC (2014) Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). Int Rev Hydrobiol 99:277–286

    Article  Google Scholar 

  • Boulton AJ, Lloyd LN (1992) Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regul Rivers Res Manag 7:137–151

    Article  Google Scholar 

  • Brock MA, Nielsen DL, Crosslé K (2005) Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshw Biol 50:1376–1390

    Article  Google Scholar 

  • Burford MA, Cook AJ, Fellows CS, Balcombe SR, Bunn SE (2008) Sources of carbon fuelling production in an arid floodplain river. Mar Freshw Res 59:224–234. doi:10.1071/mf07159

    Article  CAS  Google Scholar 

  • Canhoto C, Laranjeira C (2007) Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int Rev Hydrobiol 92:173–182. doi:10.1002/iroh.200510956

    Article  CAS  Google Scholar 

  • Canhoto C, Calapez R, Gonçalves AL, Moreira-Santos M (2013) Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshw Sci 32:411–424. doi:10.1899/12-062.1

    Article  Google Scholar 

  • Clarke K, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. National Environment Research Council, Plymouth

    Google Scholar 

  • Ekau W, Auel H, Pörtner H, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699

    Article  CAS  Google Scholar 

  • Fontenot QC, Rutherford DA, Kelso WE (2001) Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River Basin, Louisiana. Trans Am Fish Soc 130:107–116. doi:10.1577/1548-8659(2001)130<0107:EOEHAW>2.0.CO;2

    Article  Google Scholar 

  • Hamilton SK, Sippel SJ, Calheiros DF, Melack JM (1997) An anoxic event and other biogeochemical effects of the Pantanal Wetland on the Paraguay River. Limnol Oceanogr 42:257–272

    Article  CAS  Google Scholar 

  • Hessen D (1992) Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229:115–123. doi:10.1007/bf00006995

    Article  CAS  Google Scholar 

  • Hladyz S, Watkins SC, Whitworth KL, Baldwin DS (2011) Flows and hypoxic blackwater events in managed ephemeral river channels. J Hydrol 401:117–125

    Article  CAS  Google Scholar 

  • Howitt JA, Baldwin DS, Rees GN, Williams JL (2007) Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecol Model 203:229–242. doi:10.1016/j.ecolmodel.2006.11.017

    Article  Google Scholar 

  • James C, Thoms M, Quinn G (2008) Zooplankton dynamics from inundation to drying in a complex ephemeral floodplain-wetland. Aquat Sci 70:259–271. doi:10.1007/s00027-008-8034-0

    Article  CAS  Google Scholar 

  • Katajisto T (2004) Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Mar Biol 145:751–757. doi:10.1007/s00227-004-1361-3

    Google Scholar 

  • Kerr JL, Baldwin DS, Whitworth KL (2013) Options for managing hypoxic blackwater events in river systems: a review. J Environ Manag 114:139–147. doi:10.1016/j.jenvman.2012.10.013

    Article  CAS  Google Scholar 

  • King AJ, Tonkin Z, Lieshcke J (2012) Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Mar Freshw Res 63:576–586. doi:10.1071/MF11275

    Article  Google Scholar 

  • Marcus NH, Lutz RV (1998) Longevity of subitaneous and diapause eggs of Centropages hamatus (Copepoda: Calanoida) from the northern Gulf of Mexico. Mar Biol 131:249–257. doi:10.1007/s002270050317

    Article  Google Scholar 

  • McElarney YR, Rasmussen P, Foy RH, Anderson NJ (2010) Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquat Bot 93:227–236. doi:10.1016/j.aquabot.2010.09.002

    Article  Google Scholar 

  • McMaster D, Bond N (2008) A field and experimental study on the tolerances of fish to Eucalyptus camaldulensis leachate and low dissolved oxygen concentrations. Mar Freshw Res 59:177–185. doi:10.1071/MF07140

    Article  CAS  Google Scholar 

  • Mormul R, Ahlgren J, Ekvall M, Hansson L-A, Brönmark C (2012) Water brownification may increase the invasibility of a submerged non-native macrophyte. Biol Invasions 14:2091–2099. doi:10.1007/s10530-012-0216-y

    Article  Google Scholar 

  • Nielsen DL, Shiel RJ (1998) Smith FJ (1998) Ecology versus taxonomy: is there a middle ground? Hydrobiologia 387–388:451–457

    Article  Google Scholar 

  • Nielsen DL, Smith FJ, Hillman TJ, Shiel RJ (2000) Impact of water regime and fish predation on zooplankton resting egg production and emergence. J Plankton Res 22:433–446

    Article  Google Scholar 

  • Nielsen DL, Brock MA, Crosslé K, Harris K, Healey M, Jarosinski I (2003) The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshw Biol 48:2214–2223

    Article  Google Scholar 

  • Nielsen DL, Brock MA, Petrie R, Crosslé K (2007) The impact of salinity pulses on the emergence of plants and zooplankton from wetland seed and egg banks. Freshw Biol 52:784–795

    Article  Google Scholar 

  • Nielsen DL, Gigney H, Watson G (2010) Riverine habitat heterogeneity: the role of slackwaters in providing hydrologic buffers for benthic microfauna. Hydrobiologia 638:181–191

    Article  Google Scholar 

  • Ning NSP, Nielsen DL (2011) Community structure and composition of microfaunal egg bank assemblages in riverine and floodplain sediments. Hydrobiologia 661:211–221

    Article  Google Scholar 

  • Ning NSP, Nielsen DL, Hillman TJ, Suter PJ (2008) Evaluation of a new technique for characterising resting stage zooplankton assemblages in riverine slackwater habitats and floodplain wetlands. J Plankton Res 30:415–422

    Article  Google Scholar 

  • Ning NSP, Nielsen DL, Baldwin DS (2011) Assessing the potential for biotic communities to recolonise freshwater wetlands affected by sulfidic sediments. Freshw Biol 56:2299–2315. doi:10.1111/j.1365-2427.2011.02657.x

    Article  CAS  Google Scholar 

  • Ning NSP, Gawne B, Cook RA, Nielsen DL (2013) Zooplankton dynamics in response to the transition from drought to flooding in four Murray–Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia 702:45–62. doi:10.1007/s10750-012-1306-7

    Article  Google Scholar 

  • Rautio M, Korhola A (2002) Effects of ultraviolet radiation and dissolved organic carbon on the survival of subarctic zooplankton. Polar Biol 25:460–468. doi:10.1007/s00300-002-0366-y

    Google Scholar 

  • Richmond C, Marcus NH, Sedlacek C, Miller GA, Oppert C (2006) Hypoxia and seasonal temperature: short-term effects and long-term implications for Acartia tonsa dana. J Exp Mar Biol Ecol 328:177–196. doi:10.1016/j.jembe.2005.07.004

    Article  Google Scholar 

  • Roman MR, Gauzens AL, Rhinehart WK, White JR (1993) Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnol Oceanogr 38:1603–1614

    Article  Google Scholar 

  • Salonen K, Hammar T (1986) On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68:246–253

    Article  Google Scholar 

  • Shiel RJ (1995) A guide to identification of Rotifers, Cladocerans and Copepods from Australian Inland Waters, vol 3. Cooperative Research Centre for Freshwater Ecology, Canberra

    Google Scholar 

  • Shiel RJ (2002) Murray River microfauna. Vic Nat 119:205–211

    Google Scholar 

  • Stalder LC, Marcus NH (1997) Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods. Mar Biol 127:599–607. doi:10.1007/s002270050050

    Article  Google Scholar 

  • Valett HM, Baker MA, Morrice JA, Crawford CS, Molles MC, Dahm CN, Moyer DL, Thibault JR, Ellis LM (2005) Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86:220–234. doi:10.1890/03-4091

    Article  Google Scholar 

  • Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna JM, Jeppesen E, De Meester L (2005) Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw Biol 50:96–104

    Article  Google Scholar 

  • Watkins SC, Nielsen D, Quinn GP, Gawne B (2011) The influence of leaf litter on zooplankton in floodplain wetlands: changes resulting from river regulation. Freshw Biol 56:2432–2447. doi:10.1111/j.1365-2427.2011.02665.x

    Article  Google Scholar 

  • Whitworth KL, Baldwin DS, Kerr JL (2012) Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J Hydrol 450–451:190–198. doi:10.1016/j.jhydrol.2012.04.057

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr Darren Baldwin, Kerry Whitworth, Rob Cook and Rebecca Durant for their advice during the design of this study as well as Mitch Meller and John Pengelly for their assistance with the sample processing. Sediment was collected from the Gulpa Creek floodplain under the National Parks and Wildlife scientific permit SL100331. This work was supported by funding from the Australian Government’s National Environmental Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. P. Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, N.S.P., Petrie, R., Gawne, B. et al. Hypoxic blackwater events suppress the emergence of zooplankton from wetland sediments. Aquat Sci 77, 221–230 (2015). https://doi.org/10.1007/s00027-014-0382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0382-3

Keywords

Navigation