Skip to main content
Log in

Extension problem and fractional operators: semigroups and wave equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We extend results of Caffarelli–Silvestre and Stinga–Torrea regarding a characterization of fractional powers of differential operators via an extension problem. Our results apply to generators of integrated families of operators, in particular to infinitesimal generators of bounded C 0 semigroups and operators with purely imaginary symbol. We give integral representations to the extension problem in terms of solutions to the heat equation and the wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arendt W.: Vector-valued Laplace transform and Cauchy problems. Israel J. Math. 59, 327–352 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Math. 96, Birkhäuser Verlag, Basel, 2001.

  3. W. Arendt and H. Kellerman, Integrated solutions of Volterra integro-differential equations and applications, in: Volterra Integrodiff. Eq., Proc. Conf. Trento 1987, (G. Da Prato and M. Iannelli, eds.), Pitman Res. Notes Math. 190, Longman, Harlow, 1987, pp. 21-51.

  4. V. Banica, M. M. González and M. Sáez, Some constructions for the fractional Laplacian on noncompact manifolds, preprint (2012), arXiv:1212.3109v1.

  5. Caffarelli L., Salsa S., Silvestre L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), 1903–1930.

    Google Scholar 

  8. Carron G., Coulhon T., Ouhabaz E.-M.: Gaussian estimates and L p-boundedness of Riesz means. J. Evol. Equ. 2, 299–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang S-Y.A., González M.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    MATH  Google Scholar 

  10. Davies E. B.: L p spectral independency and L 1 analyticity. J. London Math. Soc. 52, 177–184 (1995)

    Article  MathSciNet  Google Scholar 

  11. Davies E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132, 141–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Dunford and J. T. Schwarz, Linear Operators, Part III: Spectral Operators, Pure and Applied Math. VII, Wiley-Interscience, New York, 1971.

  13. O. El-Mennaoui, Traces de semi-groupes holomorphes singuliers à l’origine et comportement asymptotique, Thése, Besançon 1992.

  14. El-Mennaoui O., Keyantuo V.: Trace theorems for holomorphic semigroups and the second order Cauchy problem. Proc. Amer. Math. Soc. 124, 1445–1458 (1996)

    Article  MathSciNet  Google Scholar 

  15. F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, preprint (2012), arXiv:1206.0885v3.

  16. Galé J.E., Miana P.J.: One parameter groups of regular quasimultipliers. J. Funct. Anal. 237, 1–53 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldstein J.A.: Semigroups of Linear Operators and Applications. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  18. Hieber M.: Integrated semigroups and differential operators on L p spaces. Math. Ann. 291, 1–16 (1991)

    Article  MathSciNet  Google Scholar 

  19. Hieber M.: Integrated semigroups and the Cauchy problem for systems in L p spaces. J. Math. Anal. Appl. 162, 300–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hieber M.: Laplace transforms and α-times integrated semigroups. Forum Math. 3, 595–612 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hieber M.: L p spectra of pseudodifferential operators generating integrated semigroups. Trans. Amer. Math. Soc. 347, 4023–4035 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Hieber M.: Spectral theory and Cauchy problems on L p spaces. Math. Z. 216, 613–628 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Hu Y., Kallianpur G.: Schrödinger equations with fractional Laplacians. Appl. Math. Optim. 42, 281–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keyantuo V.: Integrated semigroups and related partial differential equations. J. Math. Anal. Appl. 212, 135–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martínez C., Sanz M., Marco L.: Fractional powers of operators. J. Math. Soc. Japan. 40, 331–347 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miana P.J.: α-times integrated semigroups and fractional derivation. Forum Math. 14, 23–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Müller, Functional calculus for Lie groups and wave propagation, in: Proc. International Congress Math., Berlin, 1998, pp. 679–689.

  28. Müller D., Stein E.M.: L p estimates for the wave equation on the Heisenberg group. Rev. Mat. Iberoamericana 15, 297–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neubrander F.: Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. Math. 135, 111–155 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Randall J.: The heat kernel for generalized Heisenberg groups. J. Geom. Anal. 6, 287–316 (1996)

    MathSciNet  MATH  Google Scholar 

  31. L. Roncal and P. R. Stinga, Fractional Laplacian on the torus, preprint (2012), arXiv:1209.6104, 16pp.

  32. Stinga P.R., Torrea J.L.: Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations 35, 2092–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stinga P.R., Zhang C.: Harnack’s inequality for fractional nonlocal equations. Discrete Contin. Dyn. Syst. 33, 3153–3170 (2013)

    Article  MATH  Google Scholar 

  34. Taflin E.: Analytic linearization of the Korteweg-de Vries equation. Pacific J. Math. 108, 203–220 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, World Scientific, New Jersey, 2004.

  36. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1978.

  37. Zaslavsky G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 71, 461–580 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Galé.

Additional information

Research partially supported by Project MTM2010-16679, DGI-FEDER, of the MCYTS, Spain, and Project E-64, D.G. Aragón, Spain. The third author was partially supported by grant MTM2011-28149-C02-01 from Spanish Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galé, J.E., Miana, P.J. & Stinga, P.R. Extension problem and fractional operators: semigroups and wave equations. J. Evol. Equ. 13, 343–368 (2013). https://doi.org/10.1007/s00028-013-0182-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-013-0182-6

Mathematics Subject Classification (2010)

Keywords

Navigation