Skip to main content
Log in

Existence of periodic solutions and their asymptotic stability to the Navier–Stokes equations with the Coriolis force

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the time-periodic problem for the Navier–Stokes equations in the rotational framework. We prove the unique existence of time-periodic solutions for the prescribed external force. Furthermore, we also show the asymptotic stability of small time-periodic solutions provided the initial disturbance is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Babin, A. Mahalov, and B. Nicolaenko, Long-time averaged Euler and Navier-Stokes equations for rotating fluids, Adv. Ser. Nonlinear Dynam., vol. 7, World Sci. Publ., River Edge, NJ, 1995, pp. 145–157.

  2. Babin A., Mahalov A., Nicolaenko B.: Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal., 15, 103–150 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Babin A., Mahalov A., Nicolaenko B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Babin A., Mahalov A., Nicolaenko B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J., 50, 1–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Anisotropy and dispersion in rotating fluids, Stud. Math. Appl., vol. 31, North-Holland, Amsterdam, 2002, pp. 171–192.

  6. J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press Oxford University Press, Oxford, 2006.

  7. Giga Y., Inui K., Mahalov A., Matsui S.: Uniform local solvability for the Navier-Stokes equations with the Coriolis force.. Methods Appl. Anal. 12, 381–393 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Navier-Stokes equations in a rotating frame in \({\mathbb{R}^3}\) with initial data nondecreasing at infinity, Hokkaido Math. J., 35 (2006), 321–364.

    Google Scholar 

  9. Y. Giga, K. Inui, A. Mahalov, and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data. Indiana Univ. Math. J., 57, 2775–2791.

  10. M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491.

    Google Scholar 

  11. T. Iwabuchi, and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, submitted.

  12. T. Iwabuchi, and R. Takada, Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework, submitted.

  13. T. Iwabuchi, and R. Takada, Time periodic solutions to the Navier-Stokes equations in the rotational framework, J. Evol. Equ., 12 (2002), 985–1000.

    Google Scholar 

  14. Iwabuchi T., Takada R.: Global solutions for the Navier-Stokes equations in the rotational framework. Math. Ann., 357, 727–741 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Kang, H. Miura, and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data, Comm. Partial Differential Equations, 37 (2012), 1717–1753.

  16. Kaniel S., Shinbrot M.: A reproductive property of the Navier-Stokes equations. Arch. Rational Mech. Anal., 24, 363–369 (1967)

    MATH  MathSciNet  Google Scholar 

  17. T. Kato, Strong L p-solutions of the Navier-Stokes equation in R m, with applications to weak solutions, Math. Z., 187 (1984), 471–480.

  18. P. Konieczny, and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 250 (2011), 3859–3873.

    Google Scholar 

  19. H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33–50.

  20. Kozono H., Ogawa T.: On stability of Navier-Stokes flows in exterior domains. Arch. Rational Mech. Anal., 128, 1–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Kozono, T. Ogawa, and Y. Taniuchi,Navier-Stokes equations in the Besov space near L and BMO, Kyushu J. Math., 57 (2003), 303–324.

  22. Maremonti P.: Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space. Nonlinearity, 4, 503–529 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space, Ricerche Mat., 40 (1991), 81–135.

    Google Scholar 

  24. T. Miyakawa, Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain, Hiroshima Math. J., 12 (1982), 513–528.

    Google Scholar 

  25. H. Morimoto, On existence of periodic weak solutions of the Navier-Stokes equations in regions with periodically moving boundaries, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971/72), 499–524.

    Google Scholar 

  26. O. Sawada, The Navier-Stokes flow with linearly growing initial velocity in the whole space, Bol. Soc. Parana. Mat. (3), 22 (2004), 75–96.

  27. Serrin J.: A note on the existence of periodic solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 3, 120–122 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Takeshita, On the reproductive property of the 2-dimensional Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 297–311 (1970).

    Google Scholar 

  29. Taniuchi Y.: On stability of periodic solutions of the Navier-Stokes equations in unbounded domains. Hokkaido Math. J., 28, 147–173 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Teramoto Y.: On the stability of periodic solutions of the Navier-Stokes equations in a noncylindrical domain. Hiroshima Math. J., 13, 607–625 (1983)

    MATH  MathSciNet  Google Scholar 

  31. Yamazaki M.: The Navier-Stokes equations in the weak-L n space with time-dependent external force. Math. Ann., 317, 635–675 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yamazaki M.: Solutions in the Morrey spaces of the Navier-Stokes equation with time-dependent external force. Funkcial. Ekvac., 43, 419–460 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kozono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozono, H., Mashiko, Y. & Takada, R. Existence of periodic solutions and their asymptotic stability to the Navier–Stokes equations with the Coriolis force. J. Evol. Equ. 14, 565–601 (2014). https://doi.org/10.1007/s00028-014-0228-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0228-4

Keywords

Navigation