Skip to main content
Log in

Very weak solutions to the Navier–Stokes system in general unbounded domains

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider very weak instationary solutions u of the Navier–Stokes system in general unbounded domains \({\Omega \subset \mathbb{R}^n}\) , \({n \geq 3}\) , with smooth boundary, i.e., u solves the Navier–Stokes system in the sense of distributions and \({ u \in L^r (0,T;\tilde{L}^q(\Omega))}\) where \({\frac{2}{r} + \frac{n}{q} =1}\) , 2 < r < ∞. Solutions of this class have no differentiability properties and in general are not weak solutions in the sense of Leray–Hopf. However, they lie in the so-called Serrin class \({L^r(0,T;\tilde{L}^q(\Omega))}\) yielding uniqueness. To deal with the unboundedness of the domain, we work in the spaces \({\tilde{L}^q(\Omega)}\) (instead of \({L^q(\Omega)}\)) defined as \({L^q \cap L^2}\) when \({q \geq 2}\) but as L q+ L 2 when 1 < q < 2. The proofs are strongly based on duality arguments and the properties of the spaces \({\tilde{L}^q(\Omega)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams and J.J.F. Fournier: Sobolev Spaces. 2nd edition, Elsevier, Oxford (2003)

  2. H. Amann: Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Monographs in Mathematics 89. Birkhäuser, Basel-Boston-Berlin (1995)

  3. H. Amann: Nonhomogeneous Navier–Stokes equations with integrable low-regularity data. Nonlinear Problems in Mathematical Physics and Related Problems II. Intern. Math. Ser., 2, 1–26, eds. M.Sh. Birman, S. Hildebrandt, V.A. Solonnikov and N.N. Uraltseva, Kluwer Academic/Plenum Publ., New York (2002)

  4. H. Amann: Navier–Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Phys. 10 (Suppl. 1), 1–11 (2003)

  5. Amann H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Amrouche Ch., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44, 109–140 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Bogovskij M.E., Maslennikova V.N.: Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano 56, 125–138 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.E. Bogovskij: Decomposition of \({L_p(\Omega;R^n)}\) into the direct sum of subspaces of solenoidal and potential vector fields. Sov. Math. Dokl. 33, 161–165 (1986)

  9. Farwig R., Galdi G.P., Sohr H.: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8, 423–444 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Farwig, G.P. Galdi and H. Sohr: Very weak solutions of stationary and instationary Navier–Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems, eds. M. Chipot and J. Escher, Birkhäuser, Basel-Boston-Berlin (2005), 113–136

  11. Farwig R., Kozono H., Sohr H.: An L q-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Farwig R., Kozono H., Sohr H.: Very weak solutions of the Navier–Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59, 127–150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Farwig R., Kozono H., Sohr H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88, 239–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Farwig, H. Kozono and H. Sohr: Maximal Regularity of the Stokes Operator in General Unbounded Domains: Functional Analysis and Evolution Equations. The Günter Lumer Volume, eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below, Birkhäuser Verlag, Basel (2008), 257–272

  15. Farwig R., Kozono H., Sohr H.: On the Stokes operator in general unbounded domains. Hokkaido Math. J. 38, 111–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Farwig and P.F. Riechwald: Regularity criteria for weak solutions of the Navier–Stokes system in general unbounded domains. Submitted (2014)

  17. R. Farwig and H. Sohr: Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier–Stokes equations in \({\mathbb{R}^n}\) . Czech. Math. J. 59, 61–79 (2009)

  18. Farwig R., Sohr H.: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Farwig R., Sohr H.: On the existence of local strong solutions for the Navier–Stokes equations in completely general domains. Nonlinear Anal., Ser. A: Theory and Methods 73(1459–1465), 73, 1459–1465 (2010)

    MathSciNet  Google Scholar 

  20. Farwig R., Sohr H., Varnhorn W.: On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 55, 89–110 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. G.P. Galdi, C.G. Simader and H. Sohr: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in \({W^{-\frac{1}{q},q}}\) . Math. Ann. 331, 41–74 (2005)

  22. Kunstmann P.C.: H -calculus for the Stokes operator on unbounded domains. Arch. Math. 91, 178–186 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kunstmann P.C.: Navier–Stokes equations on unbounded domains with rough initial data. Czech. Math. J. 60, 297–313 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Riechwald P.F.: Interpolation of sum and intersection spaces of L q-type and applications to the Stokes problem in general unbounded domains. Ann. Univ. Ferrara Sez. VII Sci. Mat. 58, 167–181 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Schumacher: The Navier–Stokes equations with low-regularity data in weighted function spaces. PhD thesis, Technische Universität Darmstadt (2007)

  26. Schumacher K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54, 123–144 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schumacher K.: The instationary Stokes equations in weighted Bessel-potential spaces. J. Evol. Equ. 9, 1–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schumacher K.: The instationary Navier-Stokes equations in weighted Bessel-potential spaces. J. Math. Fluid Mech. 11, 552–571 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Sohr: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

  30. H. Triebel: Interpolation theory, function spaces, differential operators. North-Holland Publ., Amsterdam (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farwig, R., Riechwald, P.F. Very weak solutions to the Navier–Stokes system in general unbounded domains. J. Evol. Equ. 15, 253–279 (2015). https://doi.org/10.1007/s00028-014-0258-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0258-y

Mathematics Subject Classification

Keywords

Navigation