Skip to main content
Log in

Mathematical Models of Incompressible Fluids as Singular Limits of Complete Fluid Systems

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

A rigorous justification of several well-known mathematical models of incompressible fluid flows can be given in terms of singular limits of the scaled Navier-Stokes-Fourier system, where some of the characteristic numbers become small or large enough. We discuss the problem in the framework of global-in-time solutions for both the primitive and the target system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T.: Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations 10(1), 19–44 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Alazard T.: Low Mach number flows and combustion. SIAM J. Math. Anal. 38(4), 1186–1213 (2006) (electronic)

    MATH  MathSciNet  Google Scholar 

  3. Alazard T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Rational Mech. Anal. 180, 1–73 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Ambrosio L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Aronson D.G., Weinberger H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30, 33–76 (1978)

    MATH  MathSciNet  Google Scholar 

  7. Bardos C., Golse F., Levermore C.D.: Fluid dynamical limits of kinetic equations, I : Formal derivation. J. Statist. Phys. 63, 323–344 (1991)

    MathSciNet  Google Scholar 

  8. Bardos C., Golse F., Levermore C.D.: Fluid dynamical limits of kinetic equations, II : Convergence proofs for the Boltzman equation. Comm. Pure Appl. Math. 46, 667–753 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Bardos C., Levermore C.D., Ukai S., Yang T.: Kinetic equations: fluid dynamical limits and viscous heating. Bull. Inst. Math. Acad. Sin. (N.S.) 3(1), 1–49 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61–66 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Bechtel S.E., Rooney F.J., Forest M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Belgiorno F.: Notes on the third law of thermodynamics, i. J. Phys. A 36, 8165–8193 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Belgiorno F.: Notes on the third law of thermodynamics, ii. J. Phys. A 36, 8195–8221 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Boussinesq J.: Théorie analytique de la chaleur, II. Gauthier-Villars, Paris (1903)

    Google Scholar 

  15. Bulíček M., Málek J., Rajagopal K.R.: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Burq N.: Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian”. Comm. Partial Differential Equations 28(9-10), 1675–1683 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Burq N., Planchon F., Stalker J.G., Tahvildar-Zadeh A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Caffarelli L., Kohn R.V., Nirenberg L.: On the regularity of the solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    MATH  MathSciNet  Google Scholar 

  19. Callen H.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    MATH  Google Scholar 

  20. Chandrasekhar S.: Hydrodynamic and hydrodynamic stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  21. J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier. Mathematical geophysics, volume 32 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, Oxford, 2006.

  22. H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger operators: with applications to quantum mechanics and global geometry. Texts and monographs in physics, Springer-Verlag, Berlin, Heidelberg, 1987.

  23. Danchin R.: Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219 (2002)

    MATH  MathSciNet  Google Scholar 

  24. Danchin R.: Low Mach number limit for viscous compressible flows. M2AN Math. Model Numer. Anal. 39, 459–475 (2005)

    MathSciNet  Google Scholar 

  25. De Bièvre S., Pravica D.W.: Spectral analysis for optical fibres and stratified fluids. I. The limiting absorption principle. J. Funct. Anal. 98(2), 404–436 (1991)

    MathSciNet  Google Scholar 

  26. De Bièvre S., Pravica D.W.: Spectral analysis for optical fibres and stratified fluids. II. Absence of eigenvalues. Comm. Partial Differential Equations 17(1-2), 69–97 (1992)

    MathSciNet  Google Scholar 

  27. Dermejian Y., Guillot J.-C.: Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé. J. Differential Equations 62, 357–409 (1986)

    MathSciNet  Google Scholar 

  28. Desjardins B., Grenier E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Desjardins B., Grenier E., Lions P.-L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    MathSciNet  Google Scholar 

  30. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    MATH  MathSciNet  Google Scholar 

  31. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    MATH  MathSciNet  Google Scholar 

  32. Ebin D.B.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105, 141–200 (1977)

    MathSciNet  Google Scholar 

  33. Eidus D.M.: Limiting amplitude principle (in Russian). Usp. Mat. Nauk 24(3), 91–156 (1969)

    MathSciNet  Google Scholar 

  34. Eliezer S., Ghatak A., Hora H.: An introduction to equations of states, theory and applications. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  35. Engquist B., Majda A.: Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32(3), 314–358 (1979)

    MathSciNet  Google Scholar 

  36. Eyink G.L.: Local 4/5 law and energy dissipation anomaly in turbulence. Nonlinearity 16, 137–145 (2003)

    MATH  MathSciNet  Google Scholar 

  37. Fan J., Jiang S., Ou Y.: A blow up criterion for compressible, viscous heatconductive flows. Ann. I.H.Poincaré 27, 337–350 (2010)

    MATH  MathSciNet  Google Scholar 

  38. C. L. Fefferman. Existence and smoothness of the Navier-Stokes equation. In The millennium prize problems, pages 57–67. Clay Math. Inst., Cambridge, MA, 2006.

  39. Feireisl E.: Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  40. Feireisl E.: Incompressible limits and propagation of acoustic waves in large domains with boundaries. Commun. Math. Phys. 294, 73–95 (2010)

    MathSciNet  Google Scholar 

  41. Feireisl E., Novotný A.: Singular limits in thermodynamics of viscous fluids. Birkhauser, Basel (2009)

    MATH  Google Scholar 

  42. Feireisl E., Petzeltová H.: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscr. Math. 97, 109–116 (1998)

    MATH  Google Scholar 

  43. Feireisl E., Poul L.: On compactness of the velicity field in the incompressible limit of the full Navier-Stokes-Fourier system on large domains. Math. Meth. Appl. Sci. 32, 1269–1286 (2009)

    MATH  MathSciNet  Google Scholar 

  44. I. Gallagher. Résultats récents sur la limite incompressible. Astérisque, (299):Exp. No. 926, vii, 29–57, 2005. Séminaire Bourbaki. Vol. 2003/2004.

  45. Gallavotti G.: Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  46. Gallavotti G.: Foundations of fluid dynamics. Springer-Verlag, New York (2002)

    Google Scholar 

  47. Gilman P.A., Glatzmaier G.A.: Compressible convection in a rotating spherical shell. I. Anelastic equations. Astrophys. J. Suppl. 45(2), 335–349 (1981)

    MathSciNet  Google Scholar 

  48. Glatzmaier G.A., Gilman P.A.: Compressible convection in a rotating spherical shell. II. A linear anelastic model. Astrophys. J. Suppl. 45(2), 351–380 (1981)

    MathSciNet  Google Scholar 

  49. Golse F., Saint-Raymond L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    MATH  MathSciNet  Google Scholar 

  50. Golse F., Saint-Raymond L.: The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

    MATH  MathSciNet  Google Scholar 

  51. Gough D.: The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969)

    Google Scholar 

  52. Hagstrom T., Lorenz J.: On the stability of approximate solutions of hyperbolicparabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51, 1339–1387 (2002)

    MathSciNet  Google Scholar 

  53. Hoff D.: The zero Mach number limit of compressible flows. Commun. Math. Phys. 192, 543–554 (1998)

    MATH  MathSciNet  Google Scholar 

  54. Hopf E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    MATH  MathSciNet  Google Scholar 

  55. Isozaki H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)

    MATH  MathSciNet  Google Scholar 

  56. T. Kato.Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162:258–279, 1965/1966.

  57. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)

    MATH  MathSciNet  Google Scholar 

  58. Klainerman S., Majda A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)

    MATH  MathSciNet  Google Scholar 

  59. Klein R.: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech. 80, 765–777 (2000)

    MATH  Google Scholar 

  60. Klein R.: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: Math. Mod. Numer. Anal. 39, 537–559 (2005)

    MATH  Google Scholar 

  61. Klein R.: Scale-dependent models for atmospheric flows. Annual Rev. Fluid Mechanics 42, 249–274 (2010)

    Google Scholar 

  62. Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39, 261–343 (2001)

    MATH  MathSciNet  Google Scholar 

  63. Kreulich J.: The RAGE theorem in Banach spaces. Semigroup Forum 49(2), 151–163 (1994)

    MATH  MathSciNet  Google Scholar 

  64. Kruzhkov S.N.: First order quasilinear equations in several space variables (in Russian). Math. Sbornik 81, 217–243 (1970)

    Google Scholar 

  65. Ladyzhenskaya O.A.: The mathematical theory of viscous incompressible flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  66. Leis R.: Initial-boundary value problems in mathematical physics. B.G. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  67. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    MATH  MathSciNet  Google Scholar 

  68. Lighthill J.: On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London A 211, 564–587 (1952)

    MathSciNet  Google Scholar 

  69. Lighthill J.: On sound generated aerodynamically II. General theory. Proc. of the Royal Society of London A 222, 1–32 (1954)

    MathSciNet  Google Scholar 

  70. F. Lignières. The small Péclet number approximation in stellar radiative zones. Astronomy and astrophysics, pages 1–10, 1999.

  71. Lions P.-L.: Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  72. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    MATH  MathSciNet  Google Scholar 

  73. Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C.R. Acad. Sci. Paris Sér. I Math. 329(5), 387–392 (1999)

    MATH  MathSciNet  Google Scholar 

  74. Lipps F.B., Hemler R.S.: A scale analysis of deep moist convection and some related numerical calculations. J. Atmospheric Sci. 39, 2192–2210 (1982)

    Google Scholar 

  75. Ma H.F., Ukai S., Yang T.: Time periodic solutions of compressible Navier-Stokes equations. J. Differential Equations 248, 2275–2293 (2010)

    MATH  MathSciNet  Google Scholar 

  76. Majda A.: High Mach number combustion. Lecture Notes in Appl. Math. 24, 109–184 (1986)

    MathSciNet  Google Scholar 

  77. A. Majda. Introduction to PDE’s and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics 9, Courant Institute, New York, 2003.

  78. Majda A., Sethian J.: The derivation and numerical solution of the equations for zero mach number combustion. Commbust. Sci. Technol. 42, 185–205 (1985)

    Google Scholar 

  79. N. Masmoudi. Asymptotic problems and compressible and incompressible limits. In Advances in Mathematical Fluid Mechanics, J. Málek, J. Nečas, M. Rokyta Eds., Springer-Verlag, Berlin, pages 119–158, 2000.

  80. N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of Differential Equations, III, C. Dafermos, E. Feireisl Eds., Elsevier, Amsterdam, 2006.

  81. Masmoudi N.: Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. 88, 230240 (2007)

    MathSciNet  Google Scholar 

  82. Metcalfe J.L.: Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle. Trans. Amer. Math. Soc. 356(12), 4839–4855 (2004) (electronic)

    MATH  MathSciNet  Google Scholar 

  83. Métivier G., Schochet S.: The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158, 61–90 (2001)

    MATH  Google Scholar 

  84. Métivier G., Schochet S.: Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183 (2003)

    MATH  MathSciNet  Google Scholar 

  85. Nagasawa T.: A new energy inequality and partial regularity for weak solutions of Navier-Stokes equations. J. Math. Fluid Mech. 3, 40–56 (2001)

    MATH  MathSciNet  Google Scholar 

  86. Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    MATH  MathSciNet  Google Scholar 

  87. Oberbeck A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem., Neue Folge 7, 271–292 (1879)

    Google Scholar 

  88. Priezjev N.V., Troian S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    MATH  Google Scholar 

  89. M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

  90. Yu. G. Reshetnyak. Stability theorems in geometry and analysis, volume 304 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author, Translation edited and with a foreword by S. S. Kutateladze.

  91. Schochet S.: The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Commun. Math. Phys. 104, 49–75 (1986)

    MATH  MathSciNet  Google Scholar 

  92. Schochet S.: Fast singular limits of hyperbolic PDE’s. J. Differential Equations 114, 476–512 (1994)

    MATH  MathSciNet  Google Scholar 

  93. Schochet S.: The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal. 39, 441–458 (2005)

    MATH  MathSciNet  Google Scholar 

  94. Serre D.: Systems of conservations laws. Cambridge university Press, Cambridge (1999)

    Google Scholar 

  95. Shimizu S.: The limiting absorption principle. Math. Meth. Appl. Sci. 19, 187–215 (1996)

    MATH  MathSciNet  Google Scholar 

  96. Sideris T., Thomases B.: Global existence for 3d incompressible and isotropic elastodynamics via the incompressible limit. Comm. Pure Appl. Math. 58, 750–788 (2005)

    MATH  MathSciNet  Google Scholar 

  97. Smith H.F., Sogge C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differential Equations 25(11-12), 2171–2183 (2000)

    MATH  MathSciNet  Google Scholar 

  98. Vaĭnberg B.R.: Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki. Moskov. Gos. Univ., Moscow (1982)

    MATH  Google Scholar 

  99. Visintin A.: Towards a two-scale calculus. ESAIM Control Optim. Calc. Var. 12(3), 371–397 (2006) (electronic)

    MATH  MathSciNet  Google Scholar 

  100. C. H. Wilcox. Sound propagation in stratified fluids. Appl. Math. Ser. 50, Springer-Verlag, Berlin, 1984.

  101. Zeytounian R.Kh.: Asymptotic modeling of atmospheric flows. Springer-Verlag, Berlin (1990)

    MATH  Google Scholar 

  102. Zeytounian R.Kh.: Joseph Boussinesq and his approximation: a contemporary view. C.R. Mecanique 331, 575–586 (2003)

    Google Scholar 

  103. Zeytounian R.Kh.: Theory and applications of viscous fluid flows. Springer-Verlag, Berlin (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Lecture held in the Seminario Matematico e Fisico on September 21, 2009.

The work of E.F. was supported by Grant 201/08/0315 of GA ČR as a part of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503. The paper was written during author’s stay at BCAM (Basque Center for Applied Mathematics) in Bilbao, which hospitality and support are gladly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E. Mathematical Models of Incompressible Fluids as Singular Limits of Complete Fluid Systems. Milan J. Math. 78, 523–560 (2010). https://doi.org/10.1007/s00032-010-0128-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-010-0128-1

Keywords

Navigation