Skip to main content
Log in

Evolution Models for Mass Transportation Problems

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a survey on several mass transportation problems, in which a given mass dynamically moves from an initial configuration to a final one. The approach we consider is the one introduced by Benamou and Brenier in [5], where a suitable cost functional F(ρ, v), depending on the density ρ and on the velocity v (which fulfill the continuity equation), has to be minimized. Acting on the functional F various forms of mass transportation problems can be modeled, as for instance those presenting congestion effects, occurring in traffic simulations and in crowd motions, or concentration effects, which give rise to branched structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio: Lecture notes on optimal transport problems. In “Mathematical aspects of evolving interfaces”, Funchal 2000, Lect. Notes Math. 1812, Springer-Verlag, Berlin (2003).

  2. Ambrosio L., Gigli N., Savaré G.: Gradient flows in metric spaces and in the space of probability measure. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  3. Ambrosio L., Tilli P.: Topics on Analysis in Metric Spaces. Oxford Lecture Ser. Math. Appl. 25. Oxford University Press, Oxford (2004)

    Google Scholar 

  4. L. Ambrosio, A. Pratelli: Existence and stability results in the L1 theory of optimal transportation. In “Optimal transportation and applications”, Martina Franca 2001, Lect. Notes Math. 1813, Springer-Verlag, Berlin (2003), 123–160.

  5. Benamou J.D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté G., Buttazzo G.: New lower semicontinuity results for nonconvex functionals defined on measures. Nonlinear Anal. 15, 679–692 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchitté G., Buttazzo G.: Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 101–117 (1992)

    MATH  Google Scholar 

  8. Bouchitté G., Buttazzo G.: Relaxation for a class of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 345–361 (1993)

    MATH  Google Scholar 

  9. Brancolini A., Buttazzo G., Santambrogio F.: Path functionals over Wasserstein spaces. J. Eur. Math. Soc. 8, 415–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brasco L.: Curves of minimal action over metric spaces. Ann. Mat. Pura Appl. 189, 95–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Brasco: Geodesics and PDE methods in transport models. Ph.D. Thesis, Universitá di Pisa Université Paris-Dauphine (2010), available at http://cvgmt.sns.it/.

  12. Brasco L., Buttazzo G., Santambrogio F.: A Benamou-Brenier approach to branched transport. SIAM J. Math. Anal. 43(2), 1023–1040 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brasco L., Santambrogio F.: An equivalent path functional formulation of branched transportation problems. Discrete Contin. Dyn. Syst. 29, 845–871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brasco L., Carlier G., Santambrogio F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93, 652–671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Brenier: Extended Monge-Kantorovich theory. In “Optimal transportation and applications”, Lect. Notes Math. 1813, Springer-Verlag, Berlin (2003), 92–121.

  16. Buttazzo G., Jimenez C., Oudet E.: An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48, 1961–1976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Buttazzo, E. Oudet: Dynamic transport problems with particles interaction terms. Paper in preparation.

  18. Caffarelli L., Feldman M., McCann R.J.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15, 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differential Equations 34, 193–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.C. Evans, W. Gangbo: Differential equation methods for the Monge-Kantorovich mass transfer problem. Memoirs Amer. Math. Soc. 653, (1999).

  21. Gilbert E.N.: Minimum cost communication networks. Bell System Tech. J. 46, 2209–2227 (1967)

    Google Scholar 

  22. L.V. Kantorovich: On the transfer of masses. Dokl. Akad. Nauk. SSSR, 37 (1942), 199–201. English translation in J. Math. Sci., 133, (2006), 1381–1382.

  23. Maury B., Roudneff-Chupin A., Santambrogio F.: A macroscopic crowd motion model of the gradient-flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Monge: Mémoire sur la théorie des déblais et des remblais. Histoire Acad. Sciences Paris, (1781), 666–704.

  25. Sudakov V.N.: Geometric problems in the theory of infinite dimensional distributions. Proc. Steklov Inst. Math. 141, 1–178 (1979)

    MathSciNet  Google Scholar 

  26. Trudinger N.S., Wang X.J.: On the Monge mass transfer problem. Calc. Var. PDE 13, 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Villani C.: Topics in optimal transportation. Graduate Studies in Mathematics 58. American Mathematical Society, Providence (2003)

    Google Scholar 

  28. Villani C.: Optimal transport, old and new. Grundlehren der Mathematischen Wissenshaften 338. Springer-Verlag, Berlin (2009)

    Google Scholar 

  29. Xia Q.: Optimal paths related to transport problems. Commun. Contemp. Math. 5, 251–279 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Buttazzo.

Additional information

This work is part of the project 2008K7Z249 Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni financed by the Italian Ministry of Research.

Lecture held in the Seminario matematico e Fisico on February 14, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttazzo, G. Evolution Models for Mass Transportation Problems. Milan J. Math. 80, 47–63 (2012). https://doi.org/10.1007/s00032-012-0175-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0175-x

Mathematics Subject Classification (2010)

Keywords

Navigation