Skip to main content
Log in

Plane wave approximation of homogeneous Helmholtz solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška I., Melenk J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  2. Bagby T., Bos L., Levenberg N.: Quantitative approximation theorems for elliptic operators. J. Approx. Theory 85, 69–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner S.C., Scott L.R.: Mathematical Theory of Finite Element Methods, 3rd edn., Texts in Applied Mathematics. Springer, New York (2007)

    Google Scholar 

  4. Buffa A., Monk P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. M2AN, Math. Model. Numer. Anal. 42, 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cessenat O., Després B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35, 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 2nd edn. Springer, Heidelberg (1998)

    Google Scholar 

  7. Farhat C., Harari I., Franca L.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190, 6455–6479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gautschi W.: On inverses of Vandermonde and confluents Vandermonde determinants. Numer. Math. 4, 117–123 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 2nd edn. Springer, Berlin (1983)

    Google Scholar 

  10. Gittelson, C.: Plane Wave Discontinuous Galerkin Methods. Master’s thesis. SAM, ETH Zürich, Zürich, Switzerland (2008)

  11. Gittelson C.J., Hiptmair R., Perugia I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. M2AN Math. Model. Numer. Anal. 43, 297–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hiptmair, R., Moiola, A., Perugia, I.: Approximation by Plane Waves. Technical report 2009-27, SAM-ETH Zürich, ETH Zürich, Switzerland (2009)

  13. Hiptmair R., Moiola A., Perugia I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49, 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lebedev N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs, N.J. (1965)

    MATH  Google Scholar 

  15. Melenk, J.M.: On Generalized Finite Element Methods. PhD thesis, University of Maryland, Maryland (1995)

  16. Melenk J.M.: Operator adapted spectral element methods I: harmonic and generalized harmonic polynomials. Numer. Math. 84, 35–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moiola, A.: Approximation Properties of Plane Wave Spaces and Application to the Analysis of the Plane Wave Discontinuous Galerkin Method. Technical report 2009-06, SAM-ETH Zürich, ETH Zürich, Switzerland (2009)

  18. Moiola, A., Hiptmair, R., Perugia, I.: Vekua theory for the Helmholtz operator. Z. Angew. Math. Phys. (2011, to appear)

  19. Müller, C.: Spherical Harmonics, vol. 17 of Lecture Notes in Mathematics. Springer, Berlin (1966)

  20. Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, vol. 44 of Applied Mathematical Sciences. Springer, Berlin (2001)

  21. Reimer, M.: Constructive theory of multivariate functions. Bibliographisches Institut, Mannheim (1990) With an application to tomography

  22. Sloan I.H., Womersley R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vekua, I.N.: New Methods for Solving Elliptic Equations. North-Holland Publishing Co., Amsterdam (1967)

  24. Womersley, R.S., Sloan, I.H.: Interpolation and Cubature on the Sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moiola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiola, A., Hiptmair, R. & Perugia, I. Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011). https://doi.org/10.1007/s00033-011-0147-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0147-y

Mathematics Subject Classification (2010)

Keywords

Navigation