Skip to main content
Log in

On the semilinear elliptic equations of electrostatic NEMS devices

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we analyze a class of semilinear elliptic equations with boundary value problem based on electrostatic nanoelectromechanical system. First, we will use upper and lower solution method to study the existence of solutions and some properties of minimal solutions for the problem. Then, we will establish the existence of a second solution by variational method in some conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Rabinowitz P.: Dual variational methods in critical point theory and application. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Batra R.C., Porfiri M., Spinello D.: Effects of Casimir force on pull-in instability in micromembranes. EPL. 77, 20010 (2007)

    Article  Google Scholar 

  3. Bordag M., Mohideen U., Mostepanenko V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis H., Nirenberg L.: H 1 versus C 1 local minimizers. C. R. Math. Acad. Sci. Paris 317, 467–472 (1993)

    MathSciNet  Google Scholar 

  5. Casimir H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948)

    MATH  Google Scholar 

  6. Crandall M.G., Rabinowitz P.H.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Ration. Mech. Anal. 58, 207–218 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ekinci K.L., Roukes M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    Article  Google Scholar 

  8. Esposito P., Ghoussoub N., Guo Y.: Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity. Comm. Pure Appl. Math. 12, 1731–1768 (2007)

    Article  MathSciNet  Google Scholar 

  9. Esposito, P., Ghoussoub, N., Guo, Y.: Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics, vol. 20, AMS/CIMS, New York (2010)

  10. Ghoussoub N., Guo Y.: On the partial differential equations of electrostatic MEMS devices: stationary case. SIAM J. Math. Anal. 38, 1423–1449 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ghoussoub N., Guo Y.: On the partial differential equations of electrostatic MEMS devices: dynamic case. NoDEA Nonlinear Differ. Equ. Appl. 15, 115–145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo Z.M., Wei J.: On a fourth order nonlinear elliptic equation with negative exponent. SIAM J. Math. Anal. 40, 2034–2054 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jia X.L., Yang J., Kitipornchai S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218, 161–174 (2011)

    Article  MATH  Google Scholar 

  14. Ke C.H., Pugno N., Peng B.: Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids. 53, 1314C1333 (2005)

    Article  Google Scholar 

  15. Kim P., Lieber C.M.: Nanotube nanotweezers. Science 286, 2148–2150 (1999)

    Article  Google Scholar 

  16. Lai B.S., Luo Q.: Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. DCDS-A 30, 227–241 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lai, B.S.: On the partial differential equations of electrostatic MEMS devices with effects of Casimir force, to appear

  18. Lin F.H., Yang Y.S.: Nonlinear non-local elliptic equation modelling electrostatic actuators. Proc. R. Soc. A. 463, 1323–1337 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lin W.H., Zhao Y.P.: Casimir effect on the pull-in parameters of nanometer switches. Microsyst. Technol. 11, 80–85 (2005)

    Article  Google Scholar 

  20. Pelesko J.A., Bernstein D.H.: Modeling MEMS and NEMS. Chapman and Hall/CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  21. Tadi beni Y., Koochi A., Abadyan M.: Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Phys. E. 43, 979–988 (2011)

    Article  Google Scholar 

  22. Xong J.L., Tong M.S., Atkins P.: Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods. Phys. Lett. A. 374, 2517–2520 (2010)

    Article  MathSciNet  Google Scholar 

  23. Yang Y.S., Zhang R.F., Zhao L.: Dynamics of electrostatic MEMS actuators. J. Math. Phys. 53, 022703 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zand M.M., Ahmadian M.T.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. IMechE 224, 2037–2047 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Cai, L. On the semilinear elliptic equations of electrostatic NEMS devices. Z. Angew. Math. Phys. 65, 1207–1222 (2014). https://doi.org/10.1007/s00033-013-0381-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0381-6

Mathematics Subject Classification

Keywords

Navigation