Skip to main content
Log in

Polarization in dielectrics modeled as micromorphic continua

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

On the basis of an extension of the micromorphic continuum theory accounting for electromagneto-elastic coupling in a consistent way, we develop a continuum formulation of polarization in dielectrics. The introduction of dielectric multipoles by means of the microdisplacement and the exploitation of their linearized evolution equations allows to achieve a representation of the polarization in terms of macroscopic and microscopic strain measures and in particular of the microrotation tensor. The microdeformation is then expressed by means of the macroscopic strain and the dependence of polarization from the gradients of the mechanical displacement is explicitly written, up to the third order in multipoles. Piezoelectric and flexoelectric tensors are thus obtained, and it is shown that they uniquely depend on electric quadrupoles and octupoles. We also discuss the reduction in the present model to micropolar continua, giving a representation of the flexoelectric tensor for isotropic micropolar dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixon R.C., Eringen A.C.: A dynamical theory of polar elastic dielectric—I. Int. J. Eng. Sci. 3, 359–377 (1965)

    Article  MathSciNet  Google Scholar 

  2. Dixon R.C., Eringen A.C.: A dynamical theory of polar elastic dielectric—II. Int. J. Eng. Sci. 3, 379–398 (1965)

    Article  MathSciNet  Google Scholar 

  3. Maugin G.A., Eringen A.C.: On the equations of electrodynamics of deformable bodies of finite extent. J. Mèc. 16, 101–147 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  5. Mindlin R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  MATH  Google Scholar 

  6. Askar A., Lee P.C.Y., Cakmak A.S.: Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys. Rev. B 1, 3525–3537 (1970)

    Article  Google Scholar 

  7. Sahin E., Dost S.: A strain-gradient theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26, 1231–1245 (1988)

    Article  Google Scholar 

  8. Majdoub M.S., Sharma P., Cagin T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  Google Scholar 

  9. Cross L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Article  Google Scholar 

  10. Zubko P., Catalan G., Buckley A., Welche P.R.L., Scott J.F.: Strain-gradient-induced polarization in SrTiO3 single crystal. Phys. Rev. Lett. 99, 167601 (2007)

    Article  Google Scholar 

  11. Martin R.M.: Piezoelectricity. Phys. Rev. B 5, 1607–1613 (1972)

    Article  Google Scholar 

  12. Tagantsev A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986)

    Article  Google Scholar 

  13. Maranganti R., Sharma P.: Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B 80, 054109 (2009)

    Article  Google Scholar 

  14. Resta R.: Towards a bulk theory of flexoelectricity. Phys. Rev. Lett. 105, 127601 (2010)

    Article  Google Scholar 

  15. Eringen A.C., Şuhubi E.S.: Nonlinear theory of simple microelastic solids I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  Google Scholar 

  16. Eringen A.C., Şuhubi E.S.: Nonlinear theory of simple microelastic solids II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  Google Scholar 

  17. Eringen A.C.: Microcontinuum field theories I—foundations and solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Romeo M.: Micromorphic continuum model for electromagnetoelastic solids. J. Appl. Math. Phys. (ZAMP) 62, 513–527 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Romeo M.: Electromagnetoelastic equations for ferroelectrics based on a micromorphic dielectric model. Acta Mech. 223, 205–219 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Romeo M.: Micromorphic elastic dielectrics: linear model and micropolar isotropic thin layers. Int. J. Solids Struct. 49, 3935–3941 (2012)

    Article  Google Scholar 

  21. Rosenfeld L.: Theory of Electrons. North-Holland Pub, Amsterdam (1951)

    MATH  Google Scholar 

  22. Mazur P., Nijboer B.R.A.: On the statistical mechanics of matter in an electromagnetic field. I. Physica 19, 971–986 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  23. Born M., Huang K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1954)

    MATH  Google Scholar 

  24. Kogan Sh.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964)

    Google Scholar 

  25. Indenbom V.L., Loginov E.B., Osipov M.A.: Ferroelectric effect and the structure of crystals. Kristallografiya 26, 1157–1162 (1981)

    Google Scholar 

  26. Chen Y., Lee J.D., Eskandarian A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lakes R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. (ed.) Continuum Models for Material with Microstructure, Wiley, New York (1995)

    Google Scholar 

  28. Eringen A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, Academic Press, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Romeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeo, M. Polarization in dielectrics modeled as micromorphic continua. Z. Angew. Math. Phys. 66, 1233–1247 (2015). https://doi.org/10.1007/s00033-014-0441-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0441-6

Mathematics Subject Classification

Keywords

Navigation