Skip to main content
Log in

Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we propose to use a second gradient, 3D orthotropic model for the characterization of the mechanical behavior of thick woven composite interlocks. Such second-gradient theory is seen to directly account for the out-of-plane bending rigidity of the yarns at the mesoscopic scale which is, in turn, related to the bending stiffness of the fibers composing the yarns themselves. The yarns’ bending rigidity evidently affects the macroscopic bending of the material and this fact is revealed by presenting a three-point bending test on \({0 ^{\circ}/90 ^{\circ} \,\,{\rm and}\,\, \pm45 ^{\circ}}\) specimens of composite interlocks. These specimens differ one from the other for the different relative direction of the yarns with respect to the edges of the sample itself. Both types of specimens are independently seen to take advantage of a second-gradient modeling for the correct description of their macroscopic bending modes. The results presented in this paper are essential for the setting up of a correct continuum framework suitable for the mechanical characterization of composite interlocks. The few second-gradient parameters introduced by the present model are all seen to be associated with peculiar deformation modes of the mesostructure (bending of the yarns) and are determined by inverse approach. Although the presented results undoubtedly represent an important step toward the complete characterization of the mechanical behavior of fibrous composite reinforcements, more complex hyperelastic second-gradient constitutive laws must be conceived in order to account for the description of all possible mesostructure-induced deformation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piola G.: The Complete Works of Gabrio Piola: Volume I Commented English Translation (Vol. 38). Springer, Berlin (2014)

    Google Scholar 

  2. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids (2014). doi:10.1177/1081286513509811

  3. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  4. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  5. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Bleustein J.L.: A note on the boundary conditions of Toupin’s strain-gradient theory. Int. J. Solids Struct. 3(6), 1053–1057 (1967)

    Article  Google Scholar 

  10. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 1–43 (2013)

  11. Madeo, A., Neff, P., Ghiba, I.D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 1–20 (2013)

  12. Neff P., Forest S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87(2–3), 239–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neff P., Jeong J., Münch I., Ramézani H.: Mean field modeling of isotropic random Cauchy elasticity versus microstretch elasticity. Zeitschrift für angewandte Mathematik und Physik 60(3), 479–497 (2009)

    Article  MATH  Google Scholar 

  14. Neff P., Jeong J., Ramézani H.: Subgrid interaction and micro-randomness–Novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46(25), 4261–4276 (2009)

    Article  MATH  Google Scholar 

  15. Cosserat, E., Cosserat, F.: Théorie des Corps déformables. Paris (1909)

  16. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus-I: théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  17. Germain P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferretti M., Madeo A., dell’Isola F., Boisse P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65, 587–612 (2013)

    Article  MathSciNet  Google Scholar 

  19. Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le J. de Physique IV 8, Pr8-39-48 (1998)

  20. Kruch, S., Forest, S.: Computation of coarse grain structures using a homogeneous equivalent medium. Le J. de Physique IV 8, Pr8-197–205 (1998)

  21. Forest, S.: Homogenization methods and mechanics of generalized continua-part 2. Theor. Appl. Mech. (28–29), 113–144 (2002)

  22. Forest, S.: Homogenization methods and the mechanics of generalized continua. In: Maugin, G. (ed.) Geometry, Continua and Microstructure, Travaux en Cours No. 60, pp. 35–48. Hermann, Paris, France (1999)

  23. Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  24. Exadaktylos G.E., Vardoulakis I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335(1), 81–109 (2001)

    Article  Google Scholar 

  25. Eremeyev V.A., Pietraszkiewicz W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  26. Altenbach H., Eremeyev V.A., Lebedev L.P., Rendon L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

    Article  MATH  Google Scholar 

  27. Eremeyev V. A., Lebedev L.P., Altenbach H.: Foundations of micropolar mechanics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  28. Piccardo G., Ranzi G., Luongo A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids (2013). doi:10.1177/1081286513493107

  29. Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

  30. Engheta N., Ziolkowski R.W.: Metamaterials: Physics and Engineering Explorations. Wiley, New York (2006)

    Book  Google Scholar 

  31. Zouhdi, S., Sihvola, A.H., Vinogradov, A.P. (eds.): Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Springer, Berlin (2009)

  32. Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dumont J.P., Ladeveze P., Poss M., Remond Y.: Damage mechanics for 3-D composites. Compos. Struct. 8(2), 119–141 (1987)

    Article  Google Scholar 

  35. Charmetant A., Orliac J.G., Vidal-Sallé E., Boisse P.: Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos. Sci. Technol. 72(12), 1352–1360 (2012)

    Article  Google Scholar 

  36. dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 1–13 (2014)

  37. Spencer A.J.M., Soldatos K.P.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 42(2), 355–368 (2007)

    Article  Google Scholar 

  38. Luongo A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27(15), 1943–1954 (1991)

    Article  MATH  Google Scholar 

  39. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41(1–3), 171–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seppecher P., Alibert J.J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys.: Conf. Ser. 319:1, 012018 (2011)

    Google Scholar 

  42. Boutin C., Hans S.: Homogenisation of periodic discrete medium: application to dynamics of framed structures. Comput. Geotech. 30(4), 303–320 (2003)

    Article  Google Scholar 

  43. Ghazavizadeh A., Rutledge G.C., Atai A.A., Ahzi S., Rémond Y., Soltani N.: Micromechanical characterization of the interphase layer in semi-crystalline polyethylene. J. Polym. Sci. Part B: Polym. Phys. 51(16), 1228–1243 (2013)

    Article  Google Scholar 

  44. Michel J.C., Moulinec H., Suquet P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172(1), 109–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Moulinec H., Suquet P.: Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties. Phys. B: Condens. Matter 338(1), 58–60 (2003)

    Article  Google Scholar 

  46. Sanchez-Palencia, E.: Homogenization method for the study of composite media. In: Asymptotic Analysis II, pp. 192–214. Springer, Berlin (1983)

  47. Oshmyan V.G., Patlazhan S.A., Remond Y.: Principles of structural–mechanical modeling of polymers and composites. Polym. Sci. Ser. A 48(9), 1004–1013 (2006)

    Article  Google Scholar 

  48. Dagli L., Remond Y.: Identification of the non-linear behaviour a 4D carbon–carbon material designed for aeronautic application. Appl. Compos. Mater. 9(1), 1–15 (2002)

    Article  Google Scholar 

  49. Mikdam A., Makradi A., Ahzi S., Garmestani H., Li D.S., Remond Y.: Statistical continuum theory for the effective conductivity of fiber filled polymer composites: effect of orientation distribution and aspect ratio. Compos. Sci. Technol. 70(3), 510–517 (2010)

    Article  Google Scholar 

  50. Raoult A.: Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Commun. Pure Appl. Anal. 8(1), 435–456 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schröder J., Neff P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003)

    Article  MATH  Google Scholar 

  52. Balzani D., Neff P., Schröder J., Holzapfel G.A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43(20), 6052–6070 (2006)

    Article  MATH  Google Scholar 

  53. Schröder J., Neff P., Ebbing V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56(12), 3486–3506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Andreaus U., Chiaia B., Placidi L.: Soft-impact dynamics of deformable bodies. Continuum Mech. Thermodyn. 25(2–4), 375–398 (2013)

    Article  MathSciNet  Google Scholar 

  55. Cuomo M., Ventura G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Math. Comput. Model. 28(4–8), 185–204 (1998)

    Article  MATH  Google Scholar 

  56. Turco E.: A strategy to identify exciting forces acting on structures. Int. J. Numer. Methods Eng 64(11), 1483–1508 (2005)

    Article  MATH  Google Scholar 

  57. Orliac, J.G.: Analyse et simulation du comportement anisotrope lors de la mise en forme de renforts tissés interlock. Ph.D. thesis, INSA-Lyon (2012)

  58. Ghiba, I.D., Bulgariu, E.: On spatial evolution of the solution of a non-standard problem in the bending theory of elastic plates. IMA J. Appl. Math. (2013). doi:10.1093/imamat/hxt046

  59. Ghiba I.D.: Semi-inverse solution for Saint-Venant’s problem in the theory of porous elastic materials. Eur. J. Mech.-A/Solids 27(6), 1060–1074 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Bulgariu E., Ghiba I.D.: On the thermal stresses in anisotropic porous cylinders. Discret. Contin. Dyn. Syst. Ser. S 6, 1539–1550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Charmetant, A.: Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites. Ph.D. thesis, INSA-Lyon (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Madeo.

Additional information

The authors thank INSA-Lyon for the financial support assigned to the project BQR 2013-0054 “Matériaux Méso et Micro-Hétérogènes: Optimisation par Modèles de Second Gradient et Applications en Ingénierie”. The second author thanks the Rhône-Alpes Région for partial funding of this project. The first and the last authors thank CRNS-INSIS for support to the PEPS project “Modélisation en Second Gradient des Renforts Fibreux de Composites”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madeo, A., Ferretti, M., dell’Isola, F. et al. Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks. Z. Angew. Math. Phys. 66, 2041–2060 (2015). https://doi.org/10.1007/s00033-015-0496-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0496-z

Mathematics Subject Classification

Keywords

Navigation